Hybrid models for homological projective duals and noncommutative resolutions

被引:0
|
作者
Jirui Guo
Mauricio Romo
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
来源
关键词
Quantum field theory; Homological algebra; Algebraic geometry; 81T30; 18G70; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
We study hybrid models arising as homological projective duals (HPD) of certain projective embeddings f:X→P(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {P}}(V)$$\end{document} of Fano manifolds X. More precisely, the category of B-branes of such hybrid models corresponds to the HPD category of the embedding f. B-branes on these hybrid models can be seen as global matrix factorizations over some compact space B or, equivalently, as the derived category of the sheaf of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-modules on B, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a sheaf of A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra. This latter interpretation corresponds to a noncommutative resolution of B. We compute explicitly the algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} by several methods, for some specific class of hybrid models. If the target space of the hybrid model is a global orbifold, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} takes the form of a smash product of an A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra with a finite group. However, this is not the case in general because the orbifold group can only be defined locally. One needs to treat the target space as an algebraic stack in such cases. We apply our results to the HPD of f corresponding to a Veronese embedding of projective space and the projective embedding of Fano complete intersections in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^{n}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Hybrid models for homological projective duals and noncommutative resolutions
    Guo, Jirui
    Romo, Mauricio
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
  • [2] Noncommutative homological projective duality
    Perry, Alexander
    ADVANCES IN MATHEMATICS, 2019, 350 : 877 - 972
  • [3] Noncommutative Grobner bases, and projective resolutions
    Green, EL
    COMPUTATIONAL METHODS FOR REPRESENTATIONS OF GROUPS AND ALGEBRAS, 1999, 173 : 29 - 60
  • [4] Holographic duals to poisson sigma models and noncommutative quantum mechanics
    Vassilevich, D. V.
    PHYSICAL REVIEW D, 2013, 87 (10):
  • [5] ON PROJECTIVE DUALS AND HYPERDETERMINANTS
    GELFAND, IM
    ZELEVINSKII, AV
    KAPRANOV, MM
    DOKLADY AKADEMII NAUK SSSR, 1989, 305 (06): : 1294 - 1298
  • [6] HOMOLOGICAL RESOLUTIONS OF COMPLEXES WITH OPERATORS
    HELLER, A
    ANNALS OF MATHEMATICS, 1954, 60 (02) : 283 - 303
  • [7] Noncommutative resolutions of discriminants
    Buchweitz, Ragnar-Olaf
    Faber, Eleonore
    Ingalls, Colin
    REPRESENTATIONS OF ALGEBRAS, 2018, 705 : 37 - 52
  • [8] Projective Resolutions
    Penner, Robert
    TOPOLOGY AND K-THEORY: LECTURES BY DANIEL QUILLEN, 2020, 2262 : 71 - 74
  • [9] Homological projective duality
    Kuznetsov, Alexander
    PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 105, 2007, 105 (1): : 157 - +
  • [10] RESOLUTIONS VIA HOMOLOGICAL PERTURBATION
    LAMBE, LA
    JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (01) : 71 - 87