Extension of free sets over commutative semirings

被引:1
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [2 ]
Qiao, Lei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 16期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Commutative semiring; semimodule; free set; free basis; LINEAR INDEPENDENCE; SEMILINEAR SPACES; BASES; MATRICES;
D O I
10.1080/03081087.2019.1704209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with extensions of free sets over commutative semirings. First, we discuss a necessary and sufficient condition that a finitely generated -semimodule is free, and by the way, we give a necessary and sufficient condition that a finite set in a finitely generated -semimodule is free. We then use these necessary and sufficient conditions to investigate the conditions that a free set in a finitely generated -semimodule can be extended to a free basis.
引用
收藏
页码:3019 / 3030
页数:12
相关论文
共 50 条
  • [21] Convergence of Newton's Method over Commutative Semirings
    Luttenberger, Michael
    Schlund, Maximilian
    INFORMATION AND COMPUTATION, 2016, 246 : 43 - 61
  • [22] The solvable conditions of linear system over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    SOFT COMPUTING, 2019, 23 (17) : 7591 - 7602
  • [23] The solvable conditions of linear system over commutative semirings
    Qian-yu Shu
    Xue-ping Wang
    Soft Computing, 2019, 23 : 7591 - 7602
  • [24] e-INVERTIBLE MATRICES OVER COMMUTATIVE SEMIRINGS
    Zhang, Lixia
    Shao, Yong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 227 - 238
  • [25] The cardinality of bases in semilinear spaces over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 83 - 100
  • [26] ON PRIMAL AND WEAKLY PRIMAL IDEALS OVER COMMUTATIVE SEMIRINGS
    Atani, Shahabaddin Ebrahimi
    GLASNIK MATEMATICKI, 2008, 43 (01) : 13 - 23
  • [27] e-Invertible Matrices Over Commutative Semirings
    Lixia Zhang
    Yong Shao
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 227 - 238
  • [28] Invertible matrices and semilinear spaces over commutative semirings
    Zhao, Shan
    Wang, Xue-ping
    INFORMATION SCIENCES, 2010, 180 (24) : 5115 - 5124
  • [29] On Steinberg algebras of Hausdorff ample groupoids over commutative semirings
    Tran Giang Nam
    Zumbraegel, Jens
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (04)
  • [30] Simple commutative semirings
    El Bashir, R
    Hurt, J
    Jancarík, A
    Kepka, T
    JOURNAL OF ALGEBRA, 2001, 236 (01) : 277 - 306