The solvable conditions of linear system over commutative semirings

被引:0
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Bideterminant; Linear system; The solvable condition; SEMILINEAR SPACES;
D O I
10.1007/s00500-019-03758-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the solution of linear system over commutative semirings. It uses the bideterminant of a matrix to investigate the solvable conditions of a system of linear equations and gives some necessary and sufficient conditions that a system of linear equations is solvable.
引用
收藏
页码:7591 / 7602
页数:12
相关论文
共 50 条
  • [1] The solvable conditions of linear system over commutative semirings
    Qian-yu Shu
    Xue-ping Wang
    Soft Computing, 2019, 23 : 7591 - 7602
  • [2] Dedekind's linear independence theorem over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (01): : 107 - 116
  • [3] Diagonability of matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1743 - 1752
  • [4] Semimodules over commutative semirings and modules over unitary commutative rings
    Chajda, Ivan
    Laenger, Helmut
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1329 - 1344
  • [5] Bases in semimodules over commutative semirings
    Tan, Yi-Jia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 139 - 152
  • [6] SIMPLE SEMIMODULES OVER COMMUTATIVE SEMIRINGS
    JEZEK, J
    KEPKA, T
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 46 (1-4): : 17 - 27
  • [7] On invertible matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 710 - 724
  • [8] On semilinear sets over commutative semirings
    Kudlek, Manfred
    FUNDAMENTA INFORMATICAE, 2007, 79 (3-4) : 447 - 452
  • [9] Determinantal identities over commutative semirings
    Poplin, PL
    Hartwig, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 99 - 132
  • [10] Zero divisors for matrices over commutative semirings
    Kanan, Asmaa M.
    SCIENCEASIA, 2016, 42 (05): : 362 - 365