The solvable conditions of linear system over commutative semirings

被引:0
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Bideterminant; Linear system; The solvable condition; SEMILINEAR SPACES;
D O I
10.1007/s00500-019-03758-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the solution of linear system over commutative semirings. It uses the bideterminant of a matrix to investigate the solvable conditions of a system of linear equations and gives some necessary and sufficient conditions that a system of linear equations is solvable.
引用
收藏
页码:7591 / 7602
页数:12
相关论文
共 50 条
  • [21] φ-prime Subsemimodules of Semimodules over Commutative Semirings
    Fatahi, Fatemeh
    Safakish, Reza
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 445 - 453
  • [22] Extension of free sets over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    Qiao, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3019 - 3030
  • [23] On the maximal solution of a linear system over tropical semirings
    Sedighe Jamshidvand
    Shaban Ghalandarzadeh
    Amirhossein Amiraslani
    Fateme Olia
    Mathematical Sciences, 2020, 14 : 147 - 157
  • [24] On the maximal solution of a linear system over tropical semirings
    Jamshidvand, Sedighe
    Ghalandarzadeh, Shaban
    Amiraslani, Amirhossein
    Olia, Fateme
    MATHEMATICAL SCIENCES, 2020, 14 (02) : 147 - 157
  • [25] Convergence of Newton's Method over Commutative Semirings
    Luttenberger, Michael
    Schlund, Maximilian
    INFORMATION AND COMPUTATION, 2016, 246 : 43 - 61
  • [26] e-INVERTIBLE MATRICES OVER COMMUTATIVE SEMIRINGS
    Zhang, Lixia
    Shao, Yong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 227 - 238
  • [27] The cardinality of bases in semilinear spaces over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 83 - 100
  • [28] ON PRIMAL AND WEAKLY PRIMAL IDEALS OVER COMMUTATIVE SEMIRINGS
    Atani, Shahabaddin Ebrahimi
    GLASNIK MATEMATICKI, 2008, 43 (01) : 13 - 23
  • [29] e-Invertible Matrices Over Commutative Semirings
    Lixia Zhang
    Yong Shao
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 227 - 238
  • [30] Invertible matrices and semilinear spaces over commutative semirings
    Zhao, Shan
    Wang, Xue-ping
    INFORMATION SCIENCES, 2010, 180 (24) : 5115 - 5124