The cardinality of bases in semilinear spaces over commutative semirings

被引:6
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutative semiring; Basis Cardinality; Invertible matrix; INVERTIBLE MATRICES;
D O I
10.1016/j.laa.2014.06.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over commutative semirings. It first discusses the cardinality of a basis and gives a necessary and sufficient condition that each basis has the same number of elements, which is then used to present the characterizations of bases, by the way, it obtains an equivalent description of an invertible matrix. It finally shows a necessary and sufficient condition that each basis has the same number of elements. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条
  • [1] Note on cardinality of bases in semilinear spaces over zerosumfree semirings
    Kanan, Asmaa M.
    Petrovic, Zoran Z.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2795 - 2799
  • [2] Bases in semilinear spaces over zerosumfree semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2681 - 2692
  • [3] Invertible matrices and semilinear spaces over commutative semirings
    Zhao, Shan
    Wang, Xue-ping
    INFORMATION SCIENCES, 2010, 180 (24) : 5115 - 5124
  • [4] Bases in semilinear spaces over join-semirings
    Zhao, Shan
    Wang, Xue-ping
    FUZZY SETS AND SYSTEMS, 2011, 182 (01) : 93 - 100
  • [5] On semilinear sets over commutative semirings
    Kudlek, Manfred
    FUNDAMENTA INFORMATICAE, 2007, 79 (3-4) : 447 - 452
  • [6] Bases in semimodules over commutative semirings
    Tan, Yi-Jia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 139 - 152
  • [7] Dimensions of L-semilinear spaces over zerosumfree semirings
    Shu, Qian-yu
    Wang, Xue-ping
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 35 - 40
  • [8] Diagonability of matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1743 - 1752
  • [9] Semimodules over commutative semirings and modules over unitary commutative rings
    Chajda, Ivan
    Laenger, Helmut
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1329 - 1344
  • [10] SIMPLE SEMIMODULES OVER COMMUTATIVE SEMIRINGS
    JEZEK, J
    KEPKA, T
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 46 (1-4): : 17 - 27