The cardinality of bases in semilinear spaces over commutative semirings

被引:6
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutative semiring; Basis Cardinality; Invertible matrix; INVERTIBLE MATRICES;
D O I
10.1016/j.laa.2014.06.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over commutative semirings. It first discusses the cardinality of a basis and gives a necessary and sufficient condition that each basis has the same number of elements, which is then used to present the characterizations of bases, by the way, it obtains an equivalent description of an invertible matrix. It finally shows a necessary and sufficient condition that each basis has the same number of elements. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条
  • [21] On semimodules over commutative, additively idempotent semirings
    Sokratova, O
    SEMIGROUP FORUM, 2002, 64 (01) : 1 - 11
  • [22] On Semimodules over Commutative Additively Idempotent Semirings
    Sokratova O.
    Semigroup Forum, 2001, 64 (1) : 1 - 11
  • [23] Idempotent Subreducts of Semimodules over Commutative Semirings
    Stanovsky, David
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 121 : 33 - 43
  • [24] Note on invertible matrices over commutative semirings
    Liao, Ya-lin
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 477 - 483
  • [25] φ-prime Subsemimodules of Semimodules over Commutative Semirings
    Fatahi, Fatemeh
    Safakish, Reza
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 445 - 453
  • [26] Extension of free sets over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    Qiao, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3019 - 3030
  • [27] Convergence of Newton's Method over Commutative Semirings
    Luttenberger, Michael
    Schlund, Maximilian
    INFORMATION AND COMPUTATION, 2016, 246 : 43 - 61
  • [28] The solvable conditions of linear system over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    SOFT COMPUTING, 2019, 23 (17) : 7591 - 7602
  • [29] The solvable conditions of linear system over commutative semirings
    Qian-yu Shu
    Xue-ping Wang
    Soft Computing, 2019, 23 : 7591 - 7602
  • [30] e-INVERTIBLE MATRICES OVER COMMUTATIVE SEMIRINGS
    Zhang, Lixia
    Shao, Yong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 227 - 238