Extension of free sets over commutative semirings

被引:1
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [2 ]
Qiao, Lei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 16期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Commutative semiring; semimodule; free set; free basis; LINEAR INDEPENDENCE; SEMILINEAR SPACES; BASES; MATRICES;
D O I
10.1080/03081087.2019.1704209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with extensions of free sets over commutative semirings. First, we discuss a necessary and sufficient condition that a finitely generated -semimodule is free, and by the way, we give a necessary and sufficient condition that a finite set in a finitely generated -semimodule is free. We then use these necessary and sufficient conditions to investigate the conditions that a free set in a finitely generated -semimodule can be extended to a free basis.
引用
收藏
页码:3019 / 3030
页数:12
相关论文
共 50 条
  • [1] On semilinear sets over commutative semirings
    Kudlek, Manfred
    FUNDAMENTA INFORMATICAE, 2007, 79 (3-4) : 447 - 452
  • [2] Diagonability of matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1743 - 1752
  • [3] Semimodules over commutative semirings and modules over unitary commutative rings
    Chajda, Ivan
    Laenger, Helmut
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1329 - 1344
  • [4] Bases in semimodules over commutative semirings
    Tan, Yi-Jia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 139 - 152
  • [5] SIMPLE SEMIMODULES OVER COMMUTATIVE SEMIRINGS
    JEZEK, J
    KEPKA, T
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 46 (1-4): : 17 - 27
  • [6] On invertible matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 710 - 724
  • [7] Determinantal identities over commutative semirings
    Poplin, PL
    Hartwig, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 99 - 132
  • [8] CONGRUENCE-FREE COMMUTATIVE SEMIRINGS
    MITCHELL, SS
    FENOGLIO, PB
    SEMIGROUP FORUM, 1988, 37 (01) : 79 - 91
  • [9] Zero divisors for matrices over commutative semirings
    Kanan, Asmaa M.
    SCIENCEASIA, 2016, 42 (05): : 362 - 365
  • [10] The further study of semimodules over commutative semirings
    Li, Yuying
    Xu, Xiaozhu
    Zhang, Haifeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (20) : 4929 - 4950