Extension of free sets over commutative semirings

被引:1
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [2 ]
Qiao, Lei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 16期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Commutative semiring; semimodule; free set; free basis; LINEAR INDEPENDENCE; SEMILINEAR SPACES; BASES; MATRICES;
D O I
10.1080/03081087.2019.1704209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with extensions of free sets over commutative semirings. First, we discuss a necessary and sufficient condition that a finitely generated -semimodule is free, and by the way, we give a necessary and sufficient condition that a finite set in a finitely generated -semimodule is free. We then use these necessary and sufficient conditions to investigate the conditions that a free set in a finitely generated -semimodule can be extended to a free basis.
引用
收藏
页码:3019 / 3030
页数:12
相关论文
共 50 条
  • [11] GENERALIZATIONS OF PRIMAL IDEALS OVER COMMUTATIVE SEMIRINGS
    Bataineh, Malik
    Malas, Ruba
    MATEMATICKI VESNIK, 2014, 66 (02): : 133 - 139
  • [12] Alternating weighted automata over commutative semirings
    Kostolanyi, Peter
    Misun, Filip
    THEORETICAL COMPUTER SCIENCE, 2018, 740 : 1 - 27
  • [13] Cholesky decomposition of matrices over commutative semirings
    Dolzan, David
    Oblak, Polona
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05): : 1057 - 1063
  • [14] On fixed point equations over commutative semirings
    Esparza, Javier
    Kiefer, Stefan
    Luttenberger, Michael
    STACS 2007, PROCEEDINGS, 2007, 4393 : 296 - +
  • [15] The applications of the bideterminant of a matrix over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07): : 1462 - 1478
  • [16] On semimodules over commutative, additively idempotent semirings
    Sokratova, O
    SEMIGROUP FORUM, 2002, 64 (01) : 1 - 11
  • [17] On Semimodules over Commutative Additively Idempotent Semirings
    Sokratova O.
    Semigroup Forum, 2001, 64 (1) : 1 - 11
  • [18] Idempotent Subreducts of Semimodules over Commutative Semirings
    Stanovsky, David
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 121 : 33 - 43
  • [19] Note on invertible matrices over commutative semirings
    Liao, Ya-lin
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 477 - 483
  • [20] φ-prime Subsemimodules of Semimodules over Commutative Semirings
    Fatahi, Fatemeh
    Safakish, Reza
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 445 - 453