Extension of free sets over commutative semirings

被引:1
|
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [2 ]
Qiao, Lei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 16期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Commutative semiring; semimodule; free set; free basis; LINEAR INDEPENDENCE; SEMILINEAR SPACES; BASES; MATRICES;
D O I
10.1080/03081087.2019.1704209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with extensions of free sets over commutative semirings. First, we discuss a necessary and sufficient condition that a finitely generated -semimodule is free, and by the way, we give a necessary and sufficient condition that a finite set in a finitely generated -semimodule is free. We then use these necessary and sufficient conditions to investigate the conditions that a free set in a finitely generated -semimodule can be extended to a free basis.
引用
收藏
页码:3019 / 3030
页数:12
相关论文
共 50 条
  • [41] SEMIRING OF QUOTIENTS OF COMMUTATIVE SEMIRINGS
    HUQ, SA
    COLLOQUIUM MATHEMATICUM, 1973, 28 (02) : 185 - 188
  • [42] Ideals and their complements in commutative semirings
    Chajda, Ivan
    Laenger, Helmut
    SOFT COMPUTING, 2019, 23 (14) : 5385 - 5392
  • [43] Ideals and their complements in commutative semirings
    Ivan Chajda
    Helmut Länger
    Soft Computing, 2019, 23 : 5385 - 5392
  • [44] ON DEFINITION FOR COMMUTATIVE IDEMPOTENT SEMIRINGS
    OHASHI, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02): : 113 - &
  • [45] COMMUTATIVE SEMIRINGS AND THEIR LATTICES OF IDEALS
    ALARCON, FE
    ANDERSON, DD
    HOUSTON JOURNAL OF MATHEMATICS, 1994, 20 (04): : 571 - 590
  • [46] Ultramatricial algebras over commutative chain semirings and application to MV-algebras
    Di Nola, Antonio
    Lenzi, Giacomo
    Tran Giang Nam
    FORUM MATHEMATICUM, 2020, 32 (02) : 287 - 305
  • [47] DETERMINATIONS OF WEIGHTED FINITE AUTOMATA OVER COMMUTATIVE IDEMPOTENT MF-SEMIRINGS
    He, Yong
    Xin, Gongcai
    Wang, Zhixi
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (03)
  • [48] Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings
    Werner, Tomas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (07) : 1455 - 1468
  • [49] Maximal simultaneously nilpotent sets of matrices over antinegative semirings
    Dolzan, David
    Oblak, Polona
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 222 - 229
  • [50] CONJECTURES ON ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS
    Kepka, Tomas
    Korbelar, Miroslav
    MATHEMATICA SLOVACA, 2016, 66 (05) : 1059 - 1064