Bases in semilinear spaces over join-semirings

被引:12
|
作者
Zhao, Shan [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semiring; Join-semiring; Semi linear space; Basis; MAX-ALGEBRA;
D O I
10.1016/j.fss.2010.10.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over join-semirings. First, it introduces the notion of an irredundant decomposition of an element in a join-semiring, then discusses the cardinality of a basis and proves that the cardinality of each basis is n if and only if the multiplicative identity element 1 is join-irreducible. If 1 is not a join-irreducible element then each basis need not have the same number of elements in semilinear spaces of n-dimensional vectors over join-semirings. This gives an answer to an open problem raised by Di Nola et al. in their work [Algebraic analysis of fuzzy systems, Fuzzy Sets and Systems 158 (2007) 1-22]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [1] Bases in semilinear spaces over zerosumfree semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2681 - 2692
  • [2] The cardinality of bases in semilinear spaces over commutative semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 83 - 100
  • [3] Note on cardinality of bases in semilinear spaces over zerosumfree semirings
    Kanan, Asmaa M.
    Petrovic, Zoran Z.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2795 - 2799
  • [4] Invertible matrices and semilinear spaces over commutative semirings
    Zhao, Shan
    Wang, Xue-ping
    INFORMATION SCIENCES, 2010, 180 (24) : 5115 - 5124
  • [5] Dimensions of L-semilinear spaces over zerosumfree semirings
    Shu, Qian-yu
    Wang, Xue-ping
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 35 - 40
  • [6] On semilinear sets over commutative semirings
    Kudlek, Manfred
    FUNDAMENTA INFORMATICAE, 2007, 79 (3-4) : 447 - 452
  • [7] Dimensional formulas of semilinear subspaces over semirings
    Shu, Qian-yu
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (11): : 1475 - 1490
  • [8] Bases in semimodules over commutative semirings
    Tan, Yi-Jia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 139 - 152
  • [9] BASES IN L-SEMILINEAR SPACES
    Shu, Q. Y.
    Xiong, Q. Q.
    Wang, X. P.
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 203 - 208
  • [10] Bases in spaces of multilinear forms over Banach spaces
    Dimant, V
    Zalduendo, I
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 548 - 566