Bases in semilinear spaces over join-semirings

被引:12
|
作者
Zhao, Shan [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semiring; Join-semiring; Semi linear space; Basis; MAX-ALGEBRA;
D O I
10.1016/j.fss.2010.10.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over join-semirings. First, it introduces the notion of an irredundant decomposition of an element in a join-semiring, then discusses the cardinality of a basis and proves that the cardinality of each basis is n if and only if the multiplicative identity element 1 is join-irreducible. If 1 is not a join-irreducible element then each basis need not have the same number of elements in semilinear spaces of n-dimensional vectors over join-semirings. This gives an answer to an open problem raised by Di Nola et al. in their work [Algebraic analysis of fuzzy systems, Fuzzy Sets and Systems 158 (2007) 1-22]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [31] On flat semimodules over semirings
    Katsov, Y
    ALGEBRA UNIVERSALIS, 2004, 51 (2-3) : 287 - 299
  • [32] The bideterminants of matrices over semirings
    Xue-ping Wang
    Qian-yu Shu
    Soft Computing, 2014, 18 : 729 - 742
  • [33] Differentiability on semilinear spaces
    Galanis, George N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4732 - 4738
  • [34] Matrix semigroups over semirings
    Gould, Victoria
    Johnson, Marianne
    Naz, Munazza
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (02) : 267 - 337
  • [35] Rank inequalities over semirings
    Beasley, LRB
    Guterman, AE
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (02) : 223 - 241
  • [36] On Flat Semimodules over Semirings
    Yefim Katsov
    algebra universalis, 2004, 51 : 287 - 299
  • [37] Determinants of matrices over semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04): : 498 - 517
  • [38] The bideterminants of matrices over semirings
    Wang, Xue-ping
    Shu, Qian-yu
    SOFT COMPUTING, 2014, 18 (04) : 729 - 742
  • [39] Ultrahomogeneous semilinear spaces
    Devillers, A
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 : 35 - 58
  • [40] Constraint Optimization over Semirings
    Pavan, A.
    Meel, Kuldeep S.
    Vinodchandran, N. V.
    Bhattacharyya, Arnab
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4070 - 4077