机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
Zhao, Shan
[1
]
Wang, Xue-ping
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
Wang, Xue-ping
[1
]
机构:
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
Semiring;
Join-semiring;
Semi linear space;
Basis;
MAX-ALGEBRA;
D O I:
10.1016/j.fss.2010.10.013
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over join-semirings. First, it introduces the notion of an irredundant decomposition of an element in a join-semiring, then discusses the cardinality of a basis and proves that the cardinality of each basis is n if and only if the multiplicative identity element 1 is join-irreducible. If 1 is not a join-irreducible element then each basis need not have the same number of elements in semilinear spaces of n-dimensional vectors over join-semirings. This gives an answer to an open problem raised by Di Nola et al. in their work [Algebraic analysis of fuzzy systems, Fuzzy Sets and Systems 158 (2007) 1-22]. (C) 2010 Elsevier B.V. All rights reserved.
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
Wang, Xue-ping
Shu, Qian-yu
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China