Bases in semilinear spaces over join-semirings

被引:12
|
作者
Zhao, Shan [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semiring; Join-semiring; Semi linear space; Basis; MAX-ALGEBRA;
D O I
10.1016/j.fss.2010.10.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over join-semirings. First, it introduces the notion of an irredundant decomposition of an element in a join-semiring, then discusses the cardinality of a basis and proves that the cardinality of each basis is n if and only if the multiplicative identity element 1 is join-irreducible. If 1 is not a join-irreducible element then each basis need not have the same number of elements in semilinear spaces of n-dimensional vectors over join-semirings. This gives an answer to an open problem raised by Di Nola et al. in their work [Algebraic analysis of fuzzy systems, Fuzzy Sets and Systems 158 (2007) 1-22]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [41] Geometrical characterization of semilinear isomorphisms of vector spaces and semilinear homeomorphisms of normed spaces
    Pankov, Mark
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 695 - 701
  • [42] ADDITIVE BASES OF VECTOR-SPACES OVER PRIME FIELDS
    ALON, N
    LINIAL, N
    MESHULAM, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 57 (02) : 203 - 210
  • [43] On common bases for the spaces A(G) and (A)over-bar(G)over-bar
    Dragilev, MM
    SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (01) : 57 - 61
  • [44] Circuits and Expressions over Finite Semirings
    Ganardi, Moses
    Hucke, Danny
    Koenig, Daniel
    Lohrey, Markus
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2018, 10 (04)
  • [45] Partial Γ-Semimodules over Partial Γ-Semirings
    Mala, M. Siva
    Rao, P. V. Srinivasa
    Kumar, K. Kiran
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2024, 56 (1-2):
  • [46] SOFT CONGRUENCE RELATIONS OVER SEMIRINGS
    Breikhna
    Hussain, Fawad
    Hila, Kostaq
    Yaqoob, Naveed
    Rahim, Mohammad Tariq
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 1 - 16
  • [47] Diagonability of matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1743 - 1752
  • [48] Invertible matrices over a class of semirings
    Dolzan, David
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [49] Noncommuting graphs of matrices over semirings
    Dolzan, David
    Oblak, Polona
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (07) : 1649 - 1656
  • [50] PSEUDOMEDIAN GRAPHS ARE JOIN SPACES
    BANDELT, HJ
    MULDER, HM
    DISCRETE MATHEMATICS, 1992, 109 (1-3) : 13 - 26