Hilbert stratification and parametric Grobner bases

被引:0
|
作者
Gonzalez-Vega, L
Traverso, C
Zanoni, A
机构
[1] Univ Cantabria, Fac Sci, Dept Matemat, E-39071 Santander, Spain
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
来源
COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS | 2005年 / 3718卷
关键词
Grobner bases; Hilbert function; specialization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize a method to analyze inhomogeneous polynomial systems containing parameters. In particular, the Hilbert function is used as a tool to check that the specialization of a "generic" Grobner basis of the parametric polynomial system (computed in a polynomial ring having both parameters and unknowns as variables) is a Grobner basis of the specialized system. Extending the analysis, we can also build the so-called Hilbert stratification of the associated variety. We classify the possible specializations according to the value of the Hilbert function of the specialized system. Some computation examples with the PoSSoLib are reported.
引用
收藏
页码:220 / 235
页数:16
相关论文
共 50 条
  • [41] CONSTRUCTING UNIVERSAL GROBNER BASES
    WEISPFENNING, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 408 - 417
  • [42] Operadic Grobner Bases: An Implementation
    Dotsenko, Vladimir
    Vejdemo-Johansson, Mikael
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 249 - +
  • [43] Grobner bases of contraction ideals
    Shibuta, Takafumi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (01) : 1 - 19
  • [44] Grobner bases of balanced polyominoes
    Herzog, Juergen
    Qureshi, Ayesha Asloob
    Shikama, Akihiro
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (07) : 775 - 783
  • [45] Grobner Bases for Increasing Sequences
    Hegedus, Gabor
    Ronyai, Lajos
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [46] POLYNOMIAL DIVISION AND GROBNER BASES
    Zeada, Samira
    TEACHING OF MATHEMATICS, 2013, 16 (01): : 22 - 28
  • [47] Grobner bases for coloured operads
    Kharitonov, Vladislav
    Khoroshkin, Anton
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 203 - 241
  • [48] GROBNER BASES AND DIFFERENTIAL ALGEBRA
    FERRO, GC
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 129 - 140
  • [49] Generalised confounding with Grobner bases
    Pistone, G
    Wynn, HP
    BIOMETRIKA, 1996, 83 (03) : 653 - 666
  • [50] Grobner Bases for Fusion Products
    Flake, Johannes
    Fourier, Ghislain
    Levandovskyy, Viktor
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (05) : 2235 - 2253