Hilbert stratification and parametric Grobner bases

被引:0
|
作者
Gonzalez-Vega, L
Traverso, C
Zanoni, A
机构
[1] Univ Cantabria, Fac Sci, Dept Matemat, E-39071 Santander, Spain
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
来源
COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS | 2005年 / 3718卷
关键词
Grobner bases; Hilbert function; specialization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize a method to analyze inhomogeneous polynomial systems containing parameters. In particular, the Hilbert function is used as a tool to check that the specialization of a "generic" Grobner basis of the parametric polynomial system (computed in a polynomial ring having both parameters and unknowns as variables) is a Grobner basis of the specialized system. Extending the analysis, we can also build the so-called Hilbert stratification of the associated variety. We classify the possible specializations according to the value of the Hilbert function of the specialized system. Some computation examples with the PoSSoLib are reported.
引用
收藏
页码:220 / 235
页数:16
相关论文
共 50 条
  • [31] Dynamical Grobner Bases
    Yengui, Ihsen
    CONSTRUCTIVE COMMUTATIVE ALGEBRA: PROJECTIVE MODULES OVER POLYNOMIAL RINGS AND DYNAMICAL GROBNER BASES, 2015, 2138 : 105 - 171
  • [32] Symideal Grobner bases
    Gobel, M
    REWRITING TECHNIQUES AND APPLICATIONS, 1996, 1103 : 48 - 62
  • [33] The Grobner fan of the Hilbert scheme
    Kambe, Yuta
    Lella, Paolo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 547 - 594
  • [34] The grobner fan of the hilbert scheme
    Kambe, Yuta
    Lella, Paolo
    arXiv, 2020,
  • [35] Grobner bases, H-bases and interpolation
    Sauer, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) : 2293 - 2308
  • [36] Grobner bases for syzygy modules of border bases
    Kreuzer, Martin
    Kriegl, Markus
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
  • [37] Grobner bases and wavelet design
    Lebrun, J
    Selesnick, I
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (02) : 227 - 259
  • [38] On parallel computation of Grobner bases
    Leykin, A
    2004 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2004, : 160 - 164
  • [39] Computing inhomogeneous Grobner bases
    Bigatti, A. M.
    Caboara, M.
    Robbiano, L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 498 - 510
  • [40] Converting bases with the Grobner walk
    Collart, S
    Kalkbrener, M
    Mall, D
    JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 465 - 469