Hilbert stratification and parametric Grobner bases

被引:0
|
作者
Gonzalez-Vega, L
Traverso, C
Zanoni, A
机构
[1] Univ Cantabria, Fac Sci, Dept Matemat, E-39071 Santander, Spain
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
来源
COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS | 2005年 / 3718卷
关键词
Grobner bases; Hilbert function; specialization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize a method to analyze inhomogeneous polynomial systems containing parameters. In particular, the Hilbert function is used as a tool to check that the specialization of a "generic" Grobner basis of the parametric polynomial system (computed in a polynomial ring having both parameters and unknowns as variables) is a Grobner basis of the specialized system. Extending the analysis, we can also build the so-called Hilbert stratification of the associated variety. We classify the possible specializations according to the value of the Hilbert function of the specialized system. Some computation examples with the PoSSoLib are reported.
引用
收藏
页码:220 / 235
页数:16
相关论文
共 50 条
  • [21] STABILITY OF GROBNER BASES
    SCHWARTZ, N
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 53 (1-2) : 171 - 186
  • [22] GROBNER BASES - AN INTRODUCTION
    BUCHBERGER, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 623 : 378 - 379
  • [23] NOTES ON GROBNER BASES
    MISHRA, B
    YAP, C
    INFORMATION SCIENCES, 1989, 48 (03) : 219 - 252
  • [24] Replications with Grobner bases
    Cohen, AM
    Di Bucchianico, A
    Riccomagno, E
    MODA6 ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2001, : 37 - 44
  • [25] Grobner bases and standard monomial bases
    Gonciulea, N
    Lakshmibai, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 255 - 260
  • [26] An introduction to Janet bases and Grobner bases
    Castro-Jiménez, FJ
    Moreno-Frías, MA
    RING THEORY AND ALGEBRAIC GEOMETRY, 2001, 221 : 133 - 145
  • [27] GROBNER BASES FOR OPERADS
    Dotsenko, Vladimir
    Khoroshkin, Anton
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) : 363 - 396
  • [28] Dynamical Grobner bases
    Yengui, Ihsen
    JOURNAL OF ALGEBRA, 2006, 301 (02) : 447 - 458
  • [29] COMPREHENSIVE GROBNER BASES
    WEISPFENNING, V
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (01) : 1 - 29
  • [30] An Application of Grobner Bases
    Xia, Shengxiang
    Xia, Gaoxiang
    MATHEMATICS ENTHUSIAST, 2009, 6 (03):