Hilbert stratification and parametric Grobner bases

被引:0
|
作者
Gonzalez-Vega, L
Traverso, C
Zanoni, A
机构
[1] Univ Cantabria, Fac Sci, Dept Matemat, E-39071 Santander, Spain
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
来源
COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS | 2005年 / 3718卷
关键词
Grobner bases; Hilbert function; specialization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize a method to analyze inhomogeneous polynomial systems containing parameters. In particular, the Hilbert function is used as a tool to check that the specialization of a "generic" Grobner basis of the parametric polynomial system (computed in a polynomial ring having both parameters and unknowns as variables) is a Grobner basis of the specialized system. Extending the analysis, we can also build the so-called Hilbert stratification of the associated variety. We classify the possible specializations according to the value of the Hilbert function of the specialized system. Some computation examples with the PoSSoLib are reported.
引用
收藏
页码:220 / 235
页数:16
相关论文
共 50 条
  • [11] HILBERT SERIES OF GROUP-REPRESENTATIONS AND GROBNER BASES FOR GENERIC MODULES
    ONN, S
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (02) : 187 - 206
  • [12] On Computing Uniform Grobner Bases for Ideals Generated by Polynimials with Parametric Exponents
    Liu Lanlan
    Zhou Meng
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2016, 29 (03) : 850 - 864
  • [13] Graph Colouring is Hard for Algorithms Based on Hilbert's Nullstellensatz and Grobner Bases
    Lauria, Massimo
    Nordstrom, Jakob
    32ND COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2017), 2017, 79
  • [14] Grobner-Shirshov Bases and Hilbert Series of Free Dend riform Algebras
    Chen, Yuqun
    Wang, Bin
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (04) : 639 - 650
  • [15] Grobner bases and involutive bases
    Astrelin, AV
    Golubitsky, OD
    Pankratiev, EV
    ALGEBRA, 2000, : 49 - 55
  • [16] Grobner bases for the Hilbert ideal and coinvariants of the dihedral group D2p
    Kohls, Martin
    Sezer, Mufit
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (16) : 1974 - 1980
  • [17] Counting and Grobner bases
    Kalorkoti, K
    JOURNAL OF SYMBOLIC COMPUTATION, 2001, 31 (03) : 307 - 313
  • [18] Equivariant Grobner bases
    Hillar, Christopher J.
    Krone, Robert
    Leykin, Anton
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 129 - 154
  • [19] Boolean Grobner bases
    Sato, Yosuke
    Inoue, Shutaro
    Suzuki, Akira
    Nabeshima, Katsusuke
    Sakai, Ko
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 622 - 632
  • [20] Regular Grobner bases
    Månsson, J
    Nordbeck, P
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (02) : 163 - 181