Grobner bases for coloured operads

被引:1
|
作者
Kharitonov, Vladislav [1 ]
Khoroshkin, Anton [1 ,2 ]
机构
[1] Natl Res Univ Higher Sch Econ, 20 Myasnitskaya St, Moscow 101000, Russia
[2] Inst Theoret & Expt Phys, 25 Bolshaya Cheremushkinskaya, Moscow 117259, Russia
关键词
Coloured operads; Grobner bases; Lie-Rinnehart algebras; ALGEBRAS;
D O I
10.1007/s10231-021-01114-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we develop the machinery of Grobner bases for coloured operads, which allows us to establish a useful criterion of Koszulness of a coloured operad. Among the examples for which we show the existence of a quadratic Grobner basis, we consider the seminal Lie-Rinehart operad whose algebras include pairs (functions, vector fields).
引用
收藏
页码:203 / 241
页数:39
相关论文
共 50 条
  • [1] GROBNER BASES FOR OPERADS
    Dotsenko, Vladimir
    Khoroshkin, Anton
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) : 363 - 396
  • [2] Gröbner bases for coloured operads
    Vladislav Kharitonov
    Anton Khoroshkin
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 203 - 241
  • [3] QUILLEN HOMOLOGY FOR OPERADS VIA GROBNER BASES
    Dotsenko, Vladimir
    Khoroshkin, Anton
    DOCUMENTA MATHEMATICA, 2013, 18 : 707 - 747
  • [4] Multiplicative bases, Grobner bases, and right Grobner bases
    Green, EL
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 601 - 623
  • [5] Motivic slices and coloured operads
    Gutierrez, Javier J.
    Roendigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul Arne
    JOURNAL OF TOPOLOGY, 2012, 5 (03) : 727 - 755
  • [6] Grobner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras
    Madariaga, Sara
    JOURNAL OF SYMBOLIC COMPUTATION, 2014, 60 : 1 - 14
  • [7] Localization of algebras over coloured operads
    Casacuberta, Carles
    Gutierrez, Javier J.
    Moerdijk, Ieke
    Vogt, Rainer M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 : 105 - 136
  • [8] Grobner bases and involutive bases
    Astrelin, AV
    Golubitsky, OD
    Pankratiev, EV
    ALGEBRA, 2000, : 49 - 55
  • [9] A model structure for coloured operads in symmetric spectra
    Gutierrez, Javier J.
    Vogt, Rainer M.
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 223 - 239
  • [10] Resolution of coloured operads and rectification of homotopy algebras
    Berger, Clemens
    Moerdijk, Ieke
    CATEGORIES IN ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS, 2007, 431 : 31 - +