A model structure for coloured operads in symmetric spectra

被引:8
|
作者
Gutierrez, Javier J. [1 ]
Vogt, Rainer M. [2 ]
机构
[1] Ctr Recerca Matemat, Bellaterra 08193, Spain
[2] Univ Osnabruck, Fachbereich Math Informat, D-49076 Osnabruck, Germany
关键词
Coloured operad; Symmetric spectra; Localization; RESOLUTION; ALGEBRAS;
D O I
10.1007/s00209-010-0794-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a model structure for coloured operads with values in the category of symmetric spectra (with the positive model structure), in which fibrations and weak equivalences are defined at the level of the underlying collections. This allows us to treat R-module spectra (where R is a cofibrant ring spectrum) as algebras over a cofibrant spectrum-valued operad with R as its first term. Using this model structure, we give sufficient conditions for homotopical localizations in the category of symmetric spectra to preserve module structures.
引用
收藏
页码:223 / 239
页数:17
相关论文
共 50 条
  • [1] A model structure for coloured operads in symmetric spectra
    Javier J. Gutiérrez
    Rainer M. Vogt
    Mathematische Zeitschrift, 2012, 270 : 223 - 239
  • [2] SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA
    Pavlov, Dmitri
    Scholbach, Jakob
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (04) : 707 - 758
  • [3] Homotopy theory of modules over operads in symmetric spectra
    Harper, John E.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (03): : 1637 - 1680
  • [4] Motivic slices and coloured operads
    Gutierrez, Javier J.
    Roendigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul Arne
    JOURNAL OF TOPOLOGY, 2012, 5 (03) : 727 - 755
  • [5] SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA (vol 18, pg 707, 2019)
    Pavlov, Dmitri
    Scholbach, Jakob
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (05) : 1113 - 1113
  • [6] Grobner bases for coloured operads
    Kharitonov, Vladislav
    Khoroshkin, Anton
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 203 - 241
  • [7] Gröbner bases for coloured operads
    Vladislav Kharitonov
    Anton Khoroshkin
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 203 - 241
  • [8] Localization of algebras over coloured operads
    Casacuberta, Carles
    Gutierrez, Javier J.
    Moerdijk, Ieke
    Vogt, Rainer M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 : 105 - 136
  • [9] Resolution of coloured operads and rectification of homotopy algebras
    Berger, Clemens
    Moerdijk, Ieke
    CATEGORIES IN ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS, 2007, 431 : 31 - +
  • [10] OPERADS FOR SYMMETRIC MONOIDAL CATEGORIES
    Elmendorf, A. D.
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 535 - 544