Anisotropic step stiffness from a kinetic model of epitaxial growth

被引:9
|
作者
Margetis, Dionisios [1 ,2 ]
Caflisch, Russel E. [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 01期
关键词
epitaxial growth; island dynamics; step edge; adatoms; edge-atoms; surface diffusion; step stiffness; line tension; step edge kinetics; kinetic steady state; Gibbs-Thomson formula; Ehrlich-Schwoebel barrier; step permeability;
D O I
10.1137/070690948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from a detailed model for the kinetics of a step edge or island boundary, we derive a Gibbs-Thomson-type formula and the associated step stiffness as a function of the step edge orientation angle, theta. Basic ingredients of the model are (i) the diffusion of point defects ("adatoms") on terraces and along step edges; (ii) the convection of kinks along step edges; and (iii) constitutive laws that relate adatom fluxes, sources for kinks, and the kink velocity with densities via a mean-field approach. This model has a kinetic (nonequilibrium) steady-state solution that correspondsto epitaxial growth through step flow. The step stiffness, (beta) over tilde(theta), is determined via perturbations of the kinetic steady state for small edge Peclet number P, which is the ratio of the deposition to the diffusive flux along a step edge. In particular, (beta) over tilde is found to satisfy (beta) over tilde = O(theta(-1)) for O(P-1/3) < theta << 1, which is in agreement with independent, equilibrium-based calculations.
引用
收藏
页码:242 / 273
页数:32
相关论文
共 50 条
  • [1] Kinetic model for a step edge in epitaxial growth
    Caflisch, RE
    Weinan, E
    Gyure, MF
    Merriman, B
    Ratsch, C
    PHYSICAL REVIEW E, 1999, 59 (06): : 6879 - 6887
  • [2] Simple model for anisotropic step growth
    Heinonen, J
    Bukharev, I
    Ala-Nissila, T
    Kosterlitz, JM
    PHYSICAL REVIEW E, 1998, 57 (06) : 6851 - 6858
  • [4] Continuum limit of a step flow model of epitaxial growth
    Kohn, RV
    Lo, TS
    Yip, NK
    CURRENT ISSUES IN HETEROEPITAXIAL GROWTH-STRESS RELAXATION AND SELF ASSEMBLY, 2002, 696 : 285 - 291
  • [5] Growth kinetic model for liquid phase electro epitaxial growth of GaSb
    Mouleeswaran, D.
    Dhanasekaran, R.
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2006, 13 (03) : 231 - 237
  • [6] Kinetic modelling of epitaxial film growth with up- and downward step barriers
    Leal, F. F.
    Oliveira, T. J.
    Ferreira, S. C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [7] Kinetic model for molecular beam epitaxial growth on a singular surface
    Trofimov, VI
    Mokerov, VG
    Shumyankov, AG
    THIN SOLID FILMS, 1997, 306 (01) : 105 - 111
  • [8] A simple model of epitaxial growth: the influence of step edge diffusion
    Biehl, M
    Kinne, M
    Kinzel, W
    Schinzer, S
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 347 - 352
  • [9] Kinetic model for step flow growth of [100] steps
    Balykov, L
    Voigt, A
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [10] Step, meandering in epitaxial growth
    Hausser, Frank
    Voigt, Axel
    JOURNAL OF CRYSTAL GROWTH, 2007, 303 (01) : 80 - 84