Anisotropic step stiffness from a kinetic model of epitaxial growth

被引:9
|
作者
Margetis, Dionisios [1 ,2 ]
Caflisch, Russel E. [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 01期
关键词
epitaxial growth; island dynamics; step edge; adatoms; edge-atoms; surface diffusion; step stiffness; line tension; step edge kinetics; kinetic steady state; Gibbs-Thomson formula; Ehrlich-Schwoebel barrier; step permeability;
D O I
10.1137/070690948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from a detailed model for the kinetics of a step edge or island boundary, we derive a Gibbs-Thomson-type formula and the associated step stiffness as a function of the step edge orientation angle, theta. Basic ingredients of the model are (i) the diffusion of point defects ("adatoms") on terraces and along step edges; (ii) the convection of kinks along step edges; and (iii) constitutive laws that relate adatom fluxes, sources for kinks, and the kink velocity with densities via a mean-field approach. This model has a kinetic (nonequilibrium) steady-state solution that correspondsto epitaxial growth through step flow. The step stiffness, (beta) over tilde(theta), is determined via perturbations of the kinetic steady state for small edge Peclet number P, which is the ratio of the deposition to the diffusive flux along a step edge. In particular, (beta) over tilde is found to satisfy (beta) over tilde = O(theta(-1)) for O(P-1/3) < theta << 1, which is in agreement with independent, equilibrium-based calculations.
引用
收藏
页码:242 / 273
页数:32
相关论文
共 50 条
  • [21] Long-wave model for strongly anisotropic growth of a crystal step
    Khenner, Mikhail
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [22] A MODEL FOR EPITAXIAL GROWTH FROM MOLECULAR BEAMS
    SAMOKHVALOV, M
    PHYSICS LETTERS A, 1969, A 29 (01) : 15 - +
  • [23] Colloidal model of two-step protocol for epitaxial growth in one dimension
    Camargo, Manuel
    Luis Gonzalez, Diego
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (14)
  • [24] Kinetic roughening with anisotropic growth rules
    Cafiero, R
    PHYSICAL REVIEW E, 2001, 63 (04): : 461081 - 461081
  • [25] A 2+1-dimensional terrace-step-kink model for epitaxial growth far from equilibrium
    Balykov, Lev
    Voigt, Axel
    MULTISCALE MODELING & SIMULATION, 2006, 5 (01): : 45 - 61
  • [26] A DIFFUSION KINETIC-MODEL FOR EPITAXIAL-GROWTH OF GALLIUM-ARSENIDE LAYERS FROM THE GAS-PHASE
    ERDOS, E
    VONKA, P
    STEJSKAL, J
    KLIMA, P
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1985, 50 (08) : 1774 - 1783
  • [27] Anisotropic reflectance from semiconductor surfaces for in-situ monitoring in epitaxial growth systems
    Zorn, M
    Jonsson, J
    Richter, W
    Zettler, JT
    Ploska, K
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1995, 152 (01): : 23 - 34
  • [28] Surface mass diffusion and step stiffness on an anisotropic surface; Mo(011)
    Ondrejcek, M.
    Swiech, W.
    Flynn, C. P.
    SURFACE SCIENCE, 2006, 600 (20) : 4673 - 4678
  • [29] A simple model of epitaxial growth
    Biehl, M
    Kinzel, W
    Schinzer, S
    EUROPHYSICS LETTERS, 1998, 41 (04): : 443 - 448
  • [30] A novel kinetic Monte Carlo method for epitaxial growth
    Deak, R.
    Neda, Z.
    Barna, P. B.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (09): : 2445 - 2450