Anisotropic step stiffness from a kinetic model of epitaxial growth

被引:9
|
作者
Margetis, Dionisios [1 ,2 ]
Caflisch, Russel E. [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 01期
关键词
epitaxial growth; island dynamics; step edge; adatoms; edge-atoms; surface diffusion; step stiffness; line tension; step edge kinetics; kinetic steady state; Gibbs-Thomson formula; Ehrlich-Schwoebel barrier; step permeability;
D O I
10.1137/070690948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from a detailed model for the kinetics of a step edge or island boundary, we derive a Gibbs-Thomson-type formula and the associated step stiffness as a function of the step edge orientation angle, theta. Basic ingredients of the model are (i) the diffusion of point defects ("adatoms") on terraces and along step edges; (ii) the convection of kinks along step edges; and (iii) constitutive laws that relate adatom fluxes, sources for kinks, and the kink velocity with densities via a mean-field approach. This model has a kinetic (nonequilibrium) steady-state solution that correspondsto epitaxial growth through step flow. The step stiffness, (beta) over tilde(theta), is determined via perturbations of the kinetic steady state for small edge Peclet number P, which is the ratio of the deposition to the diffusive flux along a step edge. In particular, (beta) over tilde is found to satisfy (beta) over tilde = O(theta(-1)) for O(P-1/3) < theta << 1, which is in agreement with independent, equilibrium-based calculations.
引用
收藏
页码:242 / 273
页数:32
相关论文
共 50 条
  • [31] Kinetic phase transitions in the epitaxial growth of compound semiconductors
    Ipatova, IP
    Malyshkin, VG
    Maradudin, AA
    Shchukin, VA
    Wallis, RF
    COMPOUND SEMICONDUCTORS 1996, 1997, (155): : 323 - 326
  • [32] INFLUENCE OF KINETIC ROUGHENING ON THE EPITAXIAL-GROWTH OF SILICON
    CHEVRIER, J
    CRUZ, A
    PINTO, N
    BERBEZIER, I
    DERRIEN, J
    JOURNAL DE PHYSIQUE I, 1994, 4 (09): : 1309 - 1324
  • [33] One-Step Ge/Si Epitaxial Growth
    Wu, Hung-Chi
    Lin, Bi-Hsuan
    Chen, Huang-Chin
    Chen, Po-Chin
    Sheu, Hwo-Shuenn
    Lin, I-Nan
    Chiu, Hsin-Tien
    Lee, Chi-Young
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) : 2398 - 2401
  • [34] Epitaxial-like Growth of Anisotropic Mesostructure on an Anisotropic Surface of an Oblique Nanocolumnar Structure
    Miyata, Hirokatsu
    Kubo, Wataru
    Sakai, Akira
    Ishida, Yohei
    Noma, Takashi
    Watanabe, Masatoshi
    Bendavid, Avi
    Martin, Philip J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (27) : 9414 - 9419
  • [35] Kinetic instability in the epitaxial growth of semiconductor solid solutions
    Ipatova, IP
    Malyshkin, VG
    Shchukin, VA
    Maradudin, AA
    Wallis, RF
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 1997, 3-4 : 23 - 37
  • [36] The role of step edge diffusion in epitaxial crystal growth
    Schinzer, S
    Kinne, M
    Biehl, M
    Kinzel, W
    SURFACE SCIENCE, 1999, 439 (1-3) : 191 - 198
  • [37] KINETIC-ANALYSIS OF EPITAXIAL-GROWTH OF CRYSTALS FROM GAS-PHASE
    ERDOS, E
    CHEMICKE LISTY, 1984, 78 (08): : 785 - 802
  • [38] Step-edge instability during epitaxial growth of graphene from SiC(0001)
    Borovikov, Valery
    Zangwill, Andrew
    PHYSICAL REVIEW B, 2009, 80 (12)
  • [39] MONATOMIC TO BIATOMIC STEP TRANSITION DURING EPITAXIAL-GROWTH BY STEP FLOW
    HARRIS, S
    SURFACE SCIENCE, 1994, 311 (03) : L712 - L716
  • [40] ANISOTROPIC KINETICS AND BILAYER EPITAXIAL-GROWTH OF SI(001)
    WILBY, MR
    CLARKE, S
    KAWAMURA, T
    VVEDENSKY, DD
    PHYSICAL REVIEW B, 1989, 40 (15): : 10617 - 10620