Anisotropic step stiffness from a kinetic model of epitaxial growth

被引:9
|
作者
Margetis, Dionisios [1 ,2 ]
Caflisch, Russel E. [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 01期
关键词
epitaxial growth; island dynamics; step edge; adatoms; edge-atoms; surface diffusion; step stiffness; line tension; step edge kinetics; kinetic steady state; Gibbs-Thomson formula; Ehrlich-Schwoebel barrier; step permeability;
D O I
10.1137/070690948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from a detailed model for the kinetics of a step edge or island boundary, we derive a Gibbs-Thomson-type formula and the associated step stiffness as a function of the step edge orientation angle, theta. Basic ingredients of the model are (i) the diffusion of point defects ("adatoms") on terraces and along step edges; (ii) the convection of kinks along step edges; and (iii) constitutive laws that relate adatom fluxes, sources for kinks, and the kink velocity with densities via a mean-field approach. This model has a kinetic (nonequilibrium) steady-state solution that correspondsto epitaxial growth through step flow. The step stiffness, (beta) over tilde(theta), is determined via perturbations of the kinetic steady state for small edge Peclet number P, which is the ratio of the deposition to the diffusive flux along a step edge. In particular, (beta) over tilde is found to satisfy (beta) over tilde = O(theta(-1)) for O(P-1/3) < theta << 1, which is in agreement with independent, equilibrium-based calculations.
引用
收藏
页码:242 / 273
页数:32
相关论文
共 50 条
  • [11] A new model of morphological instabilities during epitaxial growth: from step bunching to mounds formation
    Vladimirova, M
    Pimpinelli, A
    Videcoq, A
    JOURNAL OF CRYSTAL GROWTH, 2000, 220 (04) : 631 - 636
  • [12] Kinetic mechanism of silicon epitaxial growth from chlorosilanes.
    Valente, G
    Cavallotti, C
    Masi, M
    Carrà, S
    FUNDAMENTAL GAS-PHASE AND SURFACE CHEMISTRY OF VAPOR-PHASE DEPOSITION II AND PROCESS CONTROL, DIAGNOSTICS, AND MODELING IN SEMICONDUCTOR MANFACTURING IV, 2001, 2001 (13): : 84 - 91
  • [13] Kinetic model of SiGe selective epitaxial growth using RPCVD technique
    Kolahdouz, M.
    Maresca, L.
    Ghandi, R.
    Khatibi, A.
    Radamson, H. H.
    SIGE, GE, AND RELATED COMPOUNDS 4: MATERIALS, PROCESSING, AND DEVICES, 2010, 33 (06): : 581 - 593
  • [14] A kinetic model for island shape variations under epitaxial growth conditions
    Liu, SD
    Metiu, H
    SURFACE SCIENCE, 1998, 405 (2-3) : L497 - L502
  • [15] Kinetic Model of SiGe Selective Epitaxial Growth using RPCVD Technique
    Kolahdouz, M.
    Maresca, L.
    Ghandi, R.
    Khatibi, A.
    Radamson, H. H.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (04) : H457 - H464
  • [16] A new diffuse-interface model for step flow in epitaxial growth
    Raetz, Andreas
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (03) : 697 - 711
  • [17] A kinetic model for step flow growth in molecular beam epitaxy
    Balykov, Lev
    Voigt, Axel
    SURFACE SCIENCE, 2006, 600 (17) : 3436 - 3445
  • [18] A model for anisotropic epitaxial lateral overgrowth
    Khenner, M
    Braun, RJ
    Mauk, MG
    JOURNAL OF CRYSTAL GROWTH, 2002, 241 (03) : 330 - 346
  • [19] The role of the lattice step in epitaxial growth
    Fu, TY
    Tsong, TT
    EPITAXIAL GROWTH-PRINCIPLES AND APPLICATIONS, 1999, 570 : 33 - 38
  • [20] KINETIC SIMULATIONS OF EPITAXIAL-GROWTH
    METIU, H
    LU, YT
    ZHANG, Z
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 304 - COLL