Anisotropic step stiffness from a kinetic model of epitaxial growth

被引:9
|
作者
Margetis, Dionisios [1 ,2 ]
Caflisch, Russel E. [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 01期
关键词
epitaxial growth; island dynamics; step edge; adatoms; edge-atoms; surface diffusion; step stiffness; line tension; step edge kinetics; kinetic steady state; Gibbs-Thomson formula; Ehrlich-Schwoebel barrier; step permeability;
D O I
10.1137/070690948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from a detailed model for the kinetics of a step edge or island boundary, we derive a Gibbs-Thomson-type formula and the associated step stiffness as a function of the step edge orientation angle, theta. Basic ingredients of the model are (i) the diffusion of point defects ("adatoms") on terraces and along step edges; (ii) the convection of kinks along step edges; and (iii) constitutive laws that relate adatom fluxes, sources for kinks, and the kink velocity with densities via a mean-field approach. This model has a kinetic (nonequilibrium) steady-state solution that correspondsto epitaxial growth through step flow. The step stiffness, (beta) over tilde(theta), is determined via perturbations of the kinetic steady state for small edge Peclet number P, which is the ratio of the deposition to the diffusive flux along a step edge. In particular, (beta) over tilde is found to satisfy (beta) over tilde = O(theta(-1)) for O(P-1/3) < theta << 1, which is in agreement with independent, equilibrium-based calculations.
引用
收藏
页码:242 / 273
页数:32
相关论文
共 50 条
  • [41] A kinetic model for two step crystallization
    Clemente, RA
    Saleh, AA
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (02) : 773 - 775
  • [42] Anisotropic epitaxial lateral growth in GaN selective area epitaxy
    Kapolnek, D
    Keller, S
    Vetury, R
    Underwood, RD
    Kozodoy, P
    Baars, SPD
    Mishra, UK
    APPLIED PHYSICS LETTERS, 1997, 71 (09) : 1204 - 1206
  • [43] A kinetic model for anisotropic reactions in amorphous solids
    Hong, Wei
    EXTREME MECHANICS LETTERS, 2015, 2 (46-51) : 46 - 51
  • [44] Stability and selection of dendritic growth with anisotropic kinetic attachment
    Xu, JJ
    JOURNAL OF CRYSTAL GROWTH, 2002, 245 (1-2) : 134 - 148
  • [45] A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt
    W. Miller
    S. Succi
    Journal of Statistical Physics, 2002, 107 : 173 - 186
  • [46] A lattice Boltzmann model for anisotropic crystal growth from melt
    Miller, W
    Succi, S
    JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) : 173 - 186
  • [47] An anisotropic elasticity model of strain partitioning in epitaxial thin layers
    Wakeland, P
    Khraishi, T
    Zubia, D
    JOURNAL OF ELECTRONIC MATERIALS, 2003, 32 (08) : 836 - 841
  • [48] An anisotropic elasticity model of strain partitioning in epitaxial thin layers
    Peter Wakeland
    Tariq Khraishi
    David Zubia
    Journal of Electronic Materials, 2003, 32 : 836 - 841
  • [49] KINETIC-MODELS OF EPITAXIAL-GROWTH - THEORY AND EXPERIMENT
    VVEDENSKY, DD
    SMILAUER, P
    ACTA PHYSICA POLONICA A, 1995, 87 (01) : 25 - 33
  • [50] Modelling and simulating the selective epitaxial growth of silicon under consideration of anisotropic growth rates
    Spallek, RG
    Temmler, D
    Preusser, T
    Rönsch, T
    Ulbrich, S
    ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, : 387 - 390