Flat -vectors and their Ehrhart polynomials

被引:0
|
作者
Hibi, Takayuki [1 ]
Tsuchiya, Akiyoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
Ehrhart polynomial; delta-vector; Integral convex polytope;
D O I
10.1007/s00013-016-0985-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call the delta-vector of an integral convex polytope of dimension d flat if the delta-vector is of the form (1, 0,..., 0, a,..., a, 0,..., 0), where a = 1. In this paper, we give the complete characterization of possible flat delta-vectors. Moreover, for an integral convex polytopeP. RN of dimension d, we let i(P, n) = /nP n ZN / and i*(P, n) = / n(P P) n ZN /. By this characterization, we show that for any d = 1 and for any k, l = 0 with k+ l = delta-1, there exist integral convex polytopes P and Q of dimension delta such that (i) For t = 1, ..., k, we have i(P, t) = i(Q, t), (ii) For t = 1, ..., l, we have i*(P, t) = i*(Q, t), and (iii) i(P, k+ 1) l = i(Q, k+ 1) and i*(P, l + 1) l = i*(Q, l + 1).
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [21] Ehrhart polynomials and stringy Betti numbers
    Mircea Mustaţa
    Sam Payne
    Mathematische Annalen, 2005, 333 : 787 - 795
  • [22] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [23] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [24] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [25] Lower bounds on the coefficients of Ehrhart polynomials
    Henk, Martin
    Tagami, Makoto
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 70 - 83
  • [26] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [27] Rational Ehrhart quasi-polynomials
    Linke, Eva
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1966 - 1978
  • [28] Ehrhart polynomials of rank two matroids
    Ferroni, Luis
    Jochemko, Katharina
    Schroter, Benjamin
    ADVANCES IN APPLIED MATHEMATICS, 2022, 141
  • [29] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [30] Counterexamples of the Conjecture on Roots of Ehrhart Polynomials
    Akihiro Higashitani
    Discrete & Computational Geometry, 2012, 47 : 618 - 623