Lower bounds on the coefficients of Ehrhart polynomials

被引:19
|
作者
Henk, Martin [1 ]
Tagami, Makoto [1 ]
机构
[1] Univ Magdeburg, Inst Algebra & Geometrie, D-39106 Magdeburg, Germany
基金
日本学术振兴会;
关键词
GEOMETRIE DIOPHANTIENNE; ROOTS;
D O I
10.1016/j.ejc.2008.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present lower bounds for the coefficients of Ehrhart polynomials of convex lattice polytopes in terms of their volume. Concerning the coefficients of the Ehrhart series of a lattice polytope we show that Hibi's lower bound is not true for lattice polytopes without interior lattice points. The counterexample is based on a formula of the Ehrhart series of the join of two lattice polytope. We also present a formula for calculating the Ehrhart series of integral dilates of a polytope. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 83
页数:14
相关论文
共 50 条
  • [1] Best possible lower bounds on the coefficients of Ehrhart polynomials
    Tsuchiya, Akiyoshi
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 297 - 305
  • [2] LOWER BOUNDS FOR POLYNOMIALS WITH ALGEBRAIC COEFFICIENTS
    HEINTZ, J
    SIEVEKING, M
    THEORETICAL COMPUTER SCIENCE, 1980, 11 (03) : 321 - 330
  • [3] Coefficients and roots of Ehrhart polynomials
    Beck, M
    De Loera, JA
    Develin, M
    Pfeifle, J
    Stanley, RP
    INTEGER POINTS IN POLYHEDRA-GEOMETRY, NUMBER THEORY, ALGEBRA, OPTIMIZATION, 2005, 374 : 15 - 36
  • [4] Ehrhart Polynomials with Negative Coefficients
    Takayuki Hibi
    Akihiro Higashitani
    Akiyoshi Tsuchiya
    Koutarou Yoshida
    Graphs and Combinatorics, 2019, 35 : 363 - 371
  • [5] Ehrhart Polynomials with Negative Coefficients
    Hibi, Takayuki
    Higashitani, Akihiro
    Tsuchiya, Akiyoshi
    Yoshida, Koutarou
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 363 - 371
  • [6] Simplified lower bounds for polynomials with algebraic coefficients
    Baur, W
    JOURNAL OF COMPLEXITY, 1997, 13 (01) : 38 - 41
  • [7] Bounds for the coefficients of flow polynomials
    Dong, F. M.
    Koh, K. M.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 413 - 420
  • [8] BOUNDS FOR COEFFICIENTS OF CYCLOTOMIC POLYNOMIALS
    VAUGHAN, RC
    MICHIGAN MATHEMATICAL JOURNAL, 1975, 21 (04) : 289 - 295
  • [9] Lower and Upper Bounds of the Instability Radii for Families of Polynomials with a Fixed Subset of Coefficients
    A. V. Kraev
    A. S. Fursov
    Differential Equations, 2005, 41 : 1585 - 1592
  • [10] Lower and upper bounds of the instability radii for families of polynomials with a fixed subset of coefficients
    Kraev, AV
    Fursov, AS
    DIFFERENTIAL EQUATIONS, 2005, 41 (11) : 1585 - 1592