Lower bounds on the coefficients of Ehrhart polynomials

被引:19
|
作者
Henk, Martin [1 ]
Tagami, Makoto [1 ]
机构
[1] Univ Magdeburg, Inst Algebra & Geometrie, D-39106 Magdeburg, Germany
基金
日本学术振兴会;
关键词
GEOMETRIE DIOPHANTIENNE; ROOTS;
D O I
10.1016/j.ejc.2008.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present lower bounds for the coefficients of Ehrhart polynomials of convex lattice polytopes in terms of their volume. Concerning the coefficients of the Ehrhart series of a lattice polytope we show that Hibi's lower bound is not true for lattice polytopes without interior lattice points. The counterexample is based on a formula of the Ehrhart series of the join of two lattice polytope. We also present a formula for calculating the Ehrhart series of integral dilates of a polytope. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 83
页数:14
相关论文
共 50 条
  • [41] Ehrhart polynomials and successive minima
    Henk, Martin
    Schuermann, Achill
    Wills, Joerg M.
    MATHEMATIKA, 2005, 52 (103-04) : 1 - 16
  • [42] Ehrhart polynomials of cyclic polytopes
    Liu, F
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [43] Notes on the Roots of Ehrhart Polynomials
    Christian Bey
    Martin Henk
    Jorg M. Wills
    Discrete & Computational Geometry, 2007, 38 : 81 - 98
  • [44] LOWER BOUNDS FOR NORMAL STRUCTURE COEFFICIENTS
    BENAVIDES, TD
    ACEDO, GL
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 121 : 245 - 252
  • [45] On Ehrhart Polynomials of Lattice Triangles
    Hofscheier, Johannes
    Nill, Benjamin
    Oberg, Dennis
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [46] Lower bounds for decomposable univariate wild polynomials
    von zur Gathen, Joachim
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 : 409 - 430
  • [47] Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds
    Bhowmick, Abhishek
    Lovett, Shachar
    30TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2015), 2015, 33 : 72 - 87
  • [48] Some lower bounds for the derivative of certain polynomials
    Dar I.
    Iqbal A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2020, 66 (2) : 295 - 300
  • [49] LOWER BOUNDS FOR POLYNOMIALS USING GEOMETRIC PROGRAMMING
    Ghasemi, Mehdi
    Marshall, Murray
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) : 460 - 473
  • [50] Bounds on Autocorrelation Coefficients of Rudin-Shapiro Polynomials
    Allouche, J. -P.
    Choi, S.
    Denise, A.
    Erdelyi, T.
    Saffari, B.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 705 - 726