Interlacing Ehrhart polynomials of reflexive polytopes

被引:14
|
作者
Higashitani, Akihiro [1 ]
Kummer, Mario [2 ]
Michalek, Mateusz [2 ]
机构
[1] Kyoto Sangyo Univ, Dept Math, Kita Ku, Kyoto 6038555, Japan
[2] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 04期
关键词
GROWTH SERIES; ROOTS;
D O I
10.1007/s00029-017-0350-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It was observed by Bump et al. that Ehrhart polynomials in a special family exhibit properties shared by the Riemann function. The construction was generalized by Matsui et al. to a larger family of reflexive polytopes coming from graphs. We prove several conjectures confirming when such polynomials have zeros on a certain line in the complex plane. Our main new method is to prove a stronger property called interlacing.
引用
收藏
页码:2977 / 2998
页数:22
相关论文
共 50 条
  • [1] Interlacing Ehrhart polynomials of reflexive polytopes
    Akihiro Higashitani
    Mario Kummer
    Mateusz Michałek
    Selecta Mathematica, 2017, 23 : 2977 - 2998
  • [2] The root distributions of Ehrhart polynomials of free sums of reflexive polytopes
    Hachimori, Masahiro
    Higashitani, Akihiro
    Yamada, Yumi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03): : 1 - 17
  • [3] An Ehrhart series formula for reflexive polytopes
    Braun, Benjamin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [4] Ehrhart polynomial roots of reflexive polytopes
    Hegedus, Gabor
    Higashitani, Akihiro
    Kasprzyk, Alexander
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [5] Ehrhart polynomials of cyclic polytopes
    Liu, F
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [6] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [7] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [8] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [9] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [10] Volumes and Ehrhart polynomials of flow polytopes
    Meszaros, Karola
    Morales, Alejandro H.
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1369 - 1401