Counterexamples of the Conjecture on Roots of Ehrhart Polynomials

被引:0
|
作者
Akihiro Higashitani
机构
[1] Osaka University,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
来源
关键词
Integral convex polytope; Ehrhart polynomial; -vector;
D O I
暂无
中图分类号
学科分类号
摘要
On roots of Ehrhart polynomials, Beck et al. conjecture that all roots α of the Ehrhart polynomial of an integral convex polytope of dimension d satisfy −d≤ℜ(α)≤d−1. In this paper, we provide counterexamples for this conjecture.
引用
收藏
页码:618 / 623
页数:5
相关论文
共 50 条
  • [1] Counterexamples of the Conjecture on Roots of Ehrhart Polynomials
    Higashitani, Akihiro
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (03) : 618 - 623
  • [2] On counterexamples to a conjecture of Wills and Ehrhart polynomials whose roots have equal real parts
    Henze, Matthias
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [3] Coefficients and roots of Ehrhart polynomials
    Beck, M
    De Loera, JA
    Develin, M
    Pfeifle, J
    Stanley, RP
    INTEGER POINTS IN POLYHEDRA-GEOMETRY, NUMBER THEORY, ALGEBRA, OPTIMIZATION, 2005, 374 : 15 - 36
  • [4] Notes on the roots of Ehrhart polynomials
    Bey, Christian
    Henk, Martin
    Wills, Joerg M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (01) : 81 - 98
  • [5] Notes on the Roots of Ehrhart Polynomials
    Christian Bey
    Martin Henk
    Jorg M. Wills
    Discrete & Computational Geometry, 2007, 38 : 81 - 98
  • [6] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Gábor Hegedüs
    Alexander M. Kasprzyk
    Discrete & Computational Geometry, 2011, 46 : 488 - 499
  • [7] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Hegedues, Gabor
    Kasprzyk, Alexander M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 488 - 499
  • [8] Roots of Ehrhart polynomials arising from graphs
    Tetsushi Matsui
    Akihiro Higashitani
    Yuuki Nagazawa
    Hidefumi Ohsugi
    Takayuki Hibi
    Journal of Algebraic Combinatorics, 2011, 34 : 721 - 749
  • [9] Roots of Ehrhart polynomials arising from graphs
    Matsui, Tetsushi
    Higashitani, Akihiro
    Nagazawa, Yuuki
    Ohsugi, Hidefumi
    Hibi, Takayuki
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (04) : 721 - 749
  • [10] ROOTS OF EHRHART POLYNOMIALS OF GORENSTEIN FANO POLYTOPES
    Hibi, Takayuki
    Higashitani, Akihiro
    Ohsugi, Hidefumi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3727 - 3734