Flat -vectors and their Ehrhart polynomials

被引:0
|
作者
Hibi, Takayuki [1 ]
Tsuchiya, Akiyoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
Ehrhart polynomial; delta-vector; Integral convex polytope;
D O I
10.1007/s00013-016-0985-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call the delta-vector of an integral convex polytope of dimension d flat if the delta-vector is of the form (1, 0,..., 0, a,..., a, 0,..., 0), where a = 1. In this paper, we give the complete characterization of possible flat delta-vectors. Moreover, for an integral convex polytopeP. RN of dimension d, we let i(P, n) = /nP n ZN / and i*(P, n) = / n(P P) n ZN /. By this characterization, we show that for any d = 1 and for any k, l = 0 with k+ l = delta-1, there exist integral convex polytopes P and Q of dimension delta such that (i) For t = 1, ..., k, we have i(P, t) = i(Q, t), (ii) For t = 1, ..., l, we have i*(P, t) = i*(Q, t), and (iii) i(P, k+ 1) l = i(Q, k+ 1) and i*(P, l + 1) l = i*(Q, l + 1).
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [41] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Hegedues, Gabor
    Kasprzyk, Alexander M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 488 - 499
  • [42] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232
  • [43] Decompositions of Ehrhart h*-Polynomials for Rational Polytopes
    Beck, Matthias
    Braun, Benjamin
    Vindas-Melendez, Andres R.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (01) : 50 - 71
  • [44] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Gábor Hegedüs
    Alexander M. Kasprzyk
    Discrete & Computational Geometry, 2011, 46 : 488 - 499
  • [46] On the moments of moments of random matrices and Ehrhart polynomials
    Assiotis, Theodoros
    Eriksson, Edward
    Ni, Wenqi
    ADVANCES IN APPLIED MATHEMATICS, 2023, 149
  • [47] Ehrhart polynomials of lattice-face polytopes
    Liu, Fu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 3041 - 3069
  • [48] Mochizuki's indigenous bundles and Ehrhart polynomials
    Fu Liu
    Brian Osserman
    Journal of Algebraic Combinatorics, 2006, 23 : 125 - 136
  • [49] Roots of Ehrhart polynomials arising from graphs
    Tetsushi Matsui
    Akihiro Higashitani
    Yuuki Nagazawa
    Hidefumi Ohsugi
    Takayuki Hibi
    Journal of Algebraic Combinatorics, 2011, 34 : 721 - 749
  • [50] On Ehrhart polynomials and probability calculations in voting theory
    Dominique Lepelley
    Ahmed Louichi
    Hatem Smaoui
    Social Choice and Welfare, 2008, 30 : 363 - 383