Left Invariant Einstein-Randers Metrics on Compact Lie Groups

被引:9
|
作者
Wang, Hui [1 ]
Deng, Shaoqiang [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nankai Univ, Coll Math, Tianjin 300071, Peoples R China
关键词
Einstein-Randers metric; compact Lie groups; geodesic; flag curvature; ISOMETRIES; GEODESICS;
D O I
10.4153/CMB-2011-145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study left invariant Einstein-Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [41] Diameter and Laplace Eigenvalue Estimates for Left-invariant Metrics on Compact Lie Groups
    Lauret, Emilio A.
    POTENTIAL ANALYSIS, 2023, 58 (01) : 37 - 70
  • [42] Rigidity of Weak Einstein-Randers Spaces
    Lajmiri, Behnaz
    Bidabad, Behroz
    Rafie-Rad, Mehdi
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 207 - 220
  • [43] INVARIANT EINSTEIN KROPINA METRICS ON LIE GROUPS AND HOMOGENEOUS SPACES
    Hosseini, Masoumeh
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (02): : 295 - 304
  • [44] Left invariant Ricci flat metrics on Lie groups
    Yan, Zaili
    Deng, Shaoqiang
    FORUM MATHEMATICUM, 2023, 35 (04) : 913 - 923
  • [45] Einstein metrics on compact Lie groups which are not naturally reductive
    Andreas Arvanitoyeorgos
    Kunihiko Mori
    Yusuke Sakane
    Geometriae Dedicata, 2012, 160 : 261 - 285
  • [46] Einstein metrics on compact Lie groups which are not naturally reductive
    Arvanitoyeorgos, Andreas
    Mori, Kunihiko
    Sakane, Yusuke
    GEOMETRIAE DEDICATA, 2012, 160 (01) : 261 - 285
  • [47] Homogeneous Einstein (α, β)-metrics on compact simple Lie groups and spheres
    Yan, Zaili
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 147 - 160
  • [48] Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
    Arvanitoyeorgos, Andreas
    Dzhepko, V. V.
    Nikonorov, Yu. G.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06): : 1201 - 1213
  • [49] Left-Invariant Lorentzian Flat Metrics on Lie Groups
    Ben Haddou, Malika Ait
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF LIE THEORY, 2012, 22 (01) : 269 - 289
  • [50] LEFT INVARIANT (α, β)-METRICS ON 4-DIMENSIONAL LIE GROUPS
    Atashafrouz, Mona
    Najafi, Behzad
    Piscoran, Laurian-Ioan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 727 - 740