Left Invariant Einstein-Randers Metrics on Compact Lie Groups

被引:9
|
作者
Wang, Hui [1 ]
Deng, Shaoqiang [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nankai Univ, Coll Math, Tianjin 300071, Peoples R China
关键词
Einstein-Randers metric; compact Lie groups; geodesic; flag curvature; ISOMETRIES; GEODESICS;
D O I
10.4153/CMB-2011-145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study left invariant Einstein-Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [21] Left-Invariant Pseudo-Einstein Metrics on Lie Groups
    Sheng Chen
    Ke Liang
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 236 - 246
  • [22] LEFT-INVARIANT PSEUDO-EINSTEIN METRICS ON LIE GROUPS
    Chen, Sheng
    Liang, Ke
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (02) : 236 - 246
  • [23] NEW INVARIANT EINSTEIN AND EINSTEIN-RANDERS METRICS ON CERTAIN HOMOGENEOUS SPACES ARISING FROM FLAG MANIFOLDS
    Chen, Chao
    Chen, Huibin
    Chen, Zhiqi
    HOUSTON JOURNAL OF MATHEMATICS, 2021, 47 (04): : 769 - 790
  • [24] Homogeneous Einstein-Randers metrics on Aloff-Wallach spaces
    Liu, Xingda
    Deng, Shaoqiang
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 196 - 200
  • [25] On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups
    Moghaddam, H. R. Salimi
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (04): : 649 - 658
  • [26] On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups
    H. R. Salimi Moghaddam
    Monatshefte für Mathematik, 2015, 177 : 649 - 658
  • [27] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2024, 69 : 1 - 16
  • [28] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    CHEN ZhiQi
    DENG ShaoQiang
    LIANG Ke
    ScienceChina(Mathematics), 2015, 58 (07) : 1473 - 1482
  • [29] NATURALLY REDUCTIVE METRICS AND EINSTEIN METRICS ON COMPACT LIE GROUPS
    DATRI, JE
    ZILLER, W
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 18 (215) : 1 - 72
  • [30] Some cohomogeneity one Einstein-Randers metrics on 4-manifolds
    Deng, Shaoqiang
    Li, Jifu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (03)