Left Invariant Einstein-Randers Metrics on Compact Lie Groups

被引:9
|
作者
Wang, Hui [1 ]
Deng, Shaoqiang [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nankai Univ, Coll Math, Tianjin 300071, Peoples R China
关键词
Einstein-Randers metric; compact Lie groups; geodesic; flag curvature; ISOMETRIES; GEODESICS;
D O I
10.4153/CMB-2011-145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study left invariant Einstein-Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [31] ON LEFT INVARIANT (α, β)-METRICS ON SOME LIE GROUPS
    Deng, Shaoqiang
    Hosseini, Masoumeh
    Liu, Huaifu
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1071 - 1088
  • [32] Left invariant degenerate metrics on Lie groups
    Oussalah M.
    Bekkara E.
    Journal of Geometry, 2017, 108 (1) : 171 - 184
  • [33] CURVATURES OF LEFT INVARIANT METRICS ON LIE GROUPS
    MILNOR, J
    ADVANCES IN MATHEMATICS, 1976, 21 (03) : 293 - 329
  • [34] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    Chen Zhiqi
    Deng ShaoQiang
    Liang Ke
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1473 - 1482
  • [35] Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics
    ZhiQi Chen
    ShaoQiang Deng
    Ke Liang
    Science China Mathematics, 2015, 58 : 1473 - 1482
  • [36] Invariant metrics with nonnegative curvature on compact Lie groups
    Brown, Nathan
    Finck, Rachel
    Spencer, Matthew
    Tapp, Kristopher
    Wu, Zhongtao
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (01): : 24 - 34
  • [37] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds (vol 107, pg 86, 2014)
    Kang, Yifang
    Chen, Zhiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 408 - 409
  • [38] LEFT INVARIANT CLIFFORD-WOLF HOMOGENEOUS (α, β)-METRICS ON COMPACT SEMISIMPLE LIE GROUPS
    Deng, Shaoqiang
    Xu, Ming
    TRANSFORMATION GROUPS, 2015, 20 (02) : 395 - 416
  • [39] LEFT INVARIANT CLIFFORD-WOLF HOMOGENEOUS (α, β)-METRICS ON COMPACT SEMISIMPLE LIE GROUPS
    SHAOQIANG DENG
    MING XU
    Transformation Groups, 2015, 20 : 395 - 416
  • [40] Diameter and Laplace Eigenvalue Estimates for Left-invariant Metrics on Compact Lie Groups
    Emilio A. Lauret
    Potential Analysis, 2023, 58 : 37 - 70