Einstein metrics on compact Lie groups which are not naturally reductive

被引:0
|
作者
Andreas Arvanitoyeorgos
Kunihiko Mori
Yusuke Sakane
机构
[1] University of Patras,Department of Mathematics
[2] Saibi-Heisei Junior & Senior High School,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[3] Osaka University,undefined
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Einstein metrics; Homogeneous spaces; Naturally reductive metrics; Kähler C-spaces; 53C25; 53C30; 17B20;
D O I
暂无
中图分类号
学科分类号
摘要
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by D’Atri and Ziller (Mem Am Math Soc 18, (215) 1979). In 1996 the second author obtained non-naturally reductive Einstein metrics on the Lie group SU(n) for n ≥  6, by using a method of Riemannian submersions. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥  11), Sp(n) (n ≥  3), E6, E7, and E8.
引用
收藏
页码:261 / 285
页数:24
相关论文
共 50 条