Spectral isolation of naturally reductive metrics on simple Lie groups

被引:0
|
作者
Carolyn S. Gordon
Craig J. Sutton
机构
[1] Dartmouth College,Department of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 266卷
关键词
Laplacian; Eigenvalue spectrum; Naturally reductive metrics; Symmetric spaces; 53C20; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
We show that within the class of left-invariant naturally reductive metrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{{\rm Nat}}(G)}$$\end{document} on a compact simple Lie group G, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.
引用
收藏
页码:979 / 995
页数:16
相关论文
共 50 条