Spectral isolation of naturally reductive metrics on simple Lie groups

被引:0
|
作者
Carolyn S. Gordon
Craig J. Sutton
机构
[1] Dartmouth College,Department of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 266卷
关键词
Laplacian; Eigenvalue spectrum; Naturally reductive metrics; Symmetric spaces; 53C20; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
We show that within the class of left-invariant naturally reductive metrics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{{\rm Nat}}(G)}$$\end{document} on a compact simple Lie group G, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.
引用
收藏
页码:979 / 995
页数:16
相关论文
共 50 条
  • [11] SPECTRAL ISOLATION OF BI-INVARIANT METRICS ON COMPACT LIE GROUPS
    Gordon, Carolyn S.
    Schueth, Dorothee
    Sutton, Craig J.
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) : 1617 - 1628
  • [12] Examples of naturally reductive pseudo Riemannian Lie groups
    Ovando, Gabriela P.
    XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2011, 1360 : 157 - 163
  • [13] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Agricola, Ilka
    Ferreira, Ana Cristina
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 895 - 911
  • [14] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Ilka Agricola
    Ana Cristina Ferreira
    Advances in Applied Clifford Algebras, 2017, 27 : 895 - 911
  • [15] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2024, 69 : 1 - 16
  • [16] Indefinite Einstein Metrics on Simple Lie Groups
    Derdzinski, Andrzej
    Gal, Swiatoslaw R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (01) : 165 - 212
  • [17] A spectral gap theorem in simple Lie groups
    Yves Benoist
    Nicolas de Saxcé
    Inventiones mathematicae, 2016, 205 : 337 - 361
  • [18] A spectral gap theorem in simple Lie groups
    Benoist, Yves
    de Saxce, Nicolas
    INVENTIONES MATHEMATICAE, 2016, 205 (02) : 337 - 361
  • [19] Einstein-Randers metrics on compact simple Lie groups
    Li, Xiaosheng
    Chen, Huibin
    Chen, Zhiqi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 149 - 160
  • [20] Isospectral metrics and potentials on classical compact simple Lie groups
    Proctor, E
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) : 305 - 318