We show that within the class of left-invariant naturally reductive metrics \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{M}_{{\rm Nat}}(G)}$$\end{document} on a compact simple Lie group G, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.
机构:
Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Enrietti, Nicola
Fino, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Chen, Huibin
Chen, Zhiqi
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Chen, Zhiqi
Wolf, Joseph A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USANankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China