Static SKT metrics on Lie groups

被引:0
|
作者
Nicola Enrietti
机构
[1] Università degli studi di Torino,Dipartimento di Matematica G. Peano
来源
Manuscripta Mathematica | 2013年 / 140卷
关键词
32Q20; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
An SKT metric is a Hermitian metric on a complex manifold whose fundamental 2-form ω satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \overline{\partial} \omega=0}$$\end{document}. Streets and Tian introduced in Streets and Tian (Int Math Res Not IMRN 16:3101–3133, 2010) a Ricci-type flow that preserves the SKT condition. This flow uses the Ricci form associated to the Bismut connection, the unique Hermitian connection with totally skew-symmetric torsion, instead of the Levi-Civita connection. A SKT metric is called static if the (1, 1)-part of the Ricci form of the Bismut connection satisfies (ρB)(1, 1) = λω for some real constant λ. We study invariant static metrics on simply connected Lie groups, providing in particular a classification in dimension 4 and constructing new examples, both compact and non-compact, of static metrics in any dimension.
引用
收藏
页码:557 / 571
页数:14
相关论文
共 50 条
  • [1] Static SKT metrics on Lie groups
    Enrietti, Nicola
    MANUSCRIPTA MATHEMATICA, 2013, 140 (3-4) : 557 - 571
  • [2] CYT and SKT Metrics on Compact Semi-Simple Lie Groups
    Fino, Anna
    Grantcharov, Gueo
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [3] Compatibility of Balanced and SKT Metrics on Two-Step Solvable Lie Groups
    Freibert, Marco
    Swann, Andrew
    TRANSFORMATION GROUPS, 2025, 30 (01) : 235 - 265
  • [4] HERMITIAN CURVATURE FLOW ON UNIMODULAR LIE GROUPS AND STATIC INVARIANT METRICS
    Lafuente, Ramiro A.
    Pujia, Mattia
    Vezzoni, Luigi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) : 3967 - 3993
  • [5] INVARIANT METRICS ON LIE GROUPS
    Thompson, Gerard
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (04): : 517 - 526
  • [6] Special Hermitian metrics and Lie groups
    Enrietti, Nicola
    Fino, Anna
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S211 - S219
  • [7] NATURALLY REDUCTIVE METRICS AND EINSTEIN METRICS ON COMPACT LIE GROUPS
    DATRI, JE
    ZILLER, W
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 18 (215) : 1 - 72
  • [8] Balanced manifolds and SKT metrics
    Chiose, Ionut
    Rasdeaconu, Rares
    Suvaina, Ioana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (05) : 2505 - 2517
  • [9] ON LEFT INVARIANT (α, β)-METRICS ON SOME LIE GROUPS
    Deng, Shaoqiang
    Hosseini, Masoumeh
    Liu, Huaifu
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1071 - 1088
  • [10] Left invariant degenerate metrics on Lie groups
    Oussalah M.
    Bekkara E.
    Journal of Geometry, 2017, 108 (1) : 171 - 184