Static SKT metrics on Lie groups

被引:0
|
作者
Nicola Enrietti
机构
[1] Università degli studi di Torino,Dipartimento di Matematica G. Peano
来源
Manuscripta Mathematica | 2013年 / 140卷
关键词
32Q20; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
An SKT metric is a Hermitian metric on a complex manifold whose fundamental 2-form ω satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \overline{\partial} \omega=0}$$\end{document}. Streets and Tian introduced in Streets and Tian (Int Math Res Not IMRN 16:3101–3133, 2010) a Ricci-type flow that preserves the SKT condition. This flow uses the Ricci form associated to the Bismut connection, the unique Hermitian connection with totally skew-symmetric torsion, instead of the Levi-Civita connection. A SKT metric is called static if the (1, 1)-part of the Ricci form of the Bismut connection satisfies (ρB)(1, 1) = λω for some real constant λ. We study invariant static metrics on simply connected Lie groups, providing in particular a classification in dimension 4 and constructing new examples, both compact and non-compact, of static metrics in any dimension.
引用
收藏
页码:557 / 571
页数:14
相关论文
共 50 条