Static SKT metrics on Lie groups

被引:0
|
作者
Nicola Enrietti
机构
[1] Università degli studi di Torino,Dipartimento di Matematica G. Peano
来源
Manuscripta Mathematica | 2013年 / 140卷
关键词
32Q20; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
An SKT metric is a Hermitian metric on a complex manifold whose fundamental 2-form ω satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \overline{\partial} \omega=0}$$\end{document}. Streets and Tian introduced in Streets and Tian (Int Math Res Not IMRN 16:3101–3133, 2010) a Ricci-type flow that preserves the SKT condition. This flow uses the Ricci form associated to the Bismut connection, the unique Hermitian connection with totally skew-symmetric torsion, instead of the Levi-Civita connection. A SKT metric is called static if the (1, 1)-part of the Ricci form of the Bismut connection satisfies (ρB)(1, 1) = λω for some real constant λ. We study invariant static metrics on simply connected Lie groups, providing in particular a classification in dimension 4 and constructing new examples, both compact and non-compact, of static metrics in any dimension.
引用
收藏
页码:557 / 571
页数:14
相关论文
共 50 条
  • [11] Balanced manifolds and SKT metrics
    Ionuţ Chiose
    Rareş Răsdeaconu
    Ioana Şuvaina
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2505 - 2517
  • [12] Sequence of Induced Hausdorff Metrics on Lie Groups
    Norbil Cordova
    Ryuichi Fukuoka
    Eduardo de A. Neves
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 223 - 242
  • [13] Sequence of Induced Hausdorff Metrics on Lie Groups
    Cordova, Norbil
    Fukuoka, Ryuichi
    Neves, Eduardo de A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (01): : 223 - 242
  • [14] Hyperkahler metrics associated to compact Lie groups
    Dancer, A
    Swann, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 61 - 69
  • [15] Indefinite Einstein metrics on nice Lie groups
    Conti, Diego
    Rossi, Federico A.
    FORUM MATHEMATICUM, 2020, 32 (06) : 1599 - 1619
  • [16] Odd generalized Einstein metrics on Lie groups
    Cortes, Vicente
    David, Liana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [17] Real semisimple Lie groups and balanced metrics
    Giusti, Federico
    Podesta, Fabio
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (02) : 711 - 729
  • [18] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2024, 69 : 1 - 16
  • [19] CURVATURES OF LEFT INVARIANT METRICS ON LIE GROUPS
    MILNOR, J
    ADVANCES IN MATHEMATICS, 1976, 21 (03) : 293 - 329
  • [20] Indefinite Einstein Metrics on Simple Lie Groups
    Derdzinski, Andrzej
    Gal, Swiatoslaw R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (01) : 165 - 212