Indefinite Einstein metrics on nice Lie groups

被引:9
|
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
Einstein pseudoriemannian metrics; nilpotent Lie groups; nice Lie algebras; SOLVMANIFOLDS; ALGEBRAS;
D O I
10.1515/forum-2020-0049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension >= 8.
引用
收藏
页码:1599 / 1619
页数:21
相关论文
共 50 条
  • [1] Indefinite Einstein Metrics on Simple Lie Groups
    Derdzinski, Andrzej
    Gal, Swiatoslaw R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (01) : 165 - 212
  • [2] Odd generalized Einstein metrics on Lie groups
    Cortes, Vicente
    David, Liana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [3] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2024, 69 : 1 - 16
  • [4] NATURALLY REDUCTIVE METRICS AND EINSTEIN METRICS ON COMPACT LIE GROUPS
    DATRI, JE
    ZILLER, W
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 18 (215) : 1 - 72
  • [5] INDEFINITE HYPERKaHLER METRICS ON LIE GROUPS WITH ABELIAN COMPLEX STRUCTURES
    Bajo, Ignacio
    Sanmartin, Esperanza
    TRANSFORMATION GROUPS, 2020, 25 (03) : 647 - 666
  • [6] INDEFINITE HYPERKÄHLER METRICS ON LIE GROUPS WITH ABELIAN COMPLEX STRUCTURES
    IGNACIO BAJO
    ESPERANZA SANMARTÍN
    Transformation Groups, 2020, 25 : 647 - 666
  • [7] Einstein-Randers metrics on compact simple Lie groups
    Li, Xiaosheng
    Chen, Huibin
    Chen, Zhiqi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 149 - 160
  • [8] Invariant Einstein metrics on certain compact semisimple Lie groups
    Yan, Zaili
    Deng, Shaoqiang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 59 : 138 - 153
  • [9] Einstein metrics on compact Lie groups which are not naturally reductive
    Andreas Arvanitoyeorgos
    Kunihiko Mori
    Yusuke Sakane
    Geometriae Dedicata, 2012, 160 : 261 - 285
  • [10] Einstein metrics on compact Lie groups which are not naturally reductive
    Arvanitoyeorgos, Andreas
    Mori, Kunihiko
    Sakane, Yusuke
    GEOMETRIAE DEDICATA, 2012, 160 (01) : 261 - 285