Einstein metrics on compact Lie groups which are not naturally reductive

被引:0
|
作者
Andreas Arvanitoyeorgos
Kunihiko Mori
Yusuke Sakane
机构
[1] University of Patras,Department of Mathematics
[2] Saibi-Heisei Junior & Senior High School,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[3] Osaka University,undefined
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Einstein metrics; Homogeneous spaces; Naturally reductive metrics; Kähler C-spaces; 53C25; 53C30; 17B20;
D O I
暂无
中图分类号
学科分类号
摘要
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by D’Atri and Ziller (Mem Am Math Soc 18, (215) 1979). In 1996 the second author obtained non-naturally reductive Einstein metrics on the Lie group SU(n) for n ≥  6, by using a method of Riemannian submersions. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥  11), Sp(n) (n ≥  3), E6, E7, and E8.
引用
收藏
页码:261 / 285
页数:24
相关论文
共 50 条
  • [41] A remark on left invariant metrics on compact Lie groups
    Lorenz J. Schwachhöfer
    Archiv der Mathematik, 2008, 90 : 158 - 162
  • [42] Invariant metrics with nonnegative curvature on compact Lie groups
    Brown, Nathan
    Finck, Rachel
    Spencer, Matthew
    Tapp, Kristopher
    Wu, Zhongtao
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (01): : 24 - 34
  • [43] INVARIANT EINSTEIN KROPINA METRICS ON LIE GROUPS AND HOMOGENEOUS SPACES
    Hosseini, Masoumeh
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (02): : 295 - 304
  • [44] LIE GROUP, TRANSITIVE ON COMPACT SPATIAL FORMS OF REDUCTIVE LIE-GROUPS
    GORBATSEVICH, VV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1987, (06): : 32 - 37
  • [45] SUBGROUPS OF COMPACT LIE GROUPS WHICH ARE ALMOST CHARACTERISTIC
    POMMER, H
    ARCHIV DER MATHEMATIK, 1973, 24 (06) : 582 - 585
  • [46] Isospectral metrics and potentials on classical compact simple Lie groups
    Proctor, E
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) : 305 - 318
  • [47] Classification of generalized Einstein metrics on three-dimensional Lie groups
    Cortes, Vicente
    Krusche, David
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023, 75 (06): : 2038 - 2095
  • [48] Left-Invariant Pseudo-Einstein Metrics on Lie Groups
    Sheng Chen
    Ke Liang
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 236 - 246
  • [49] Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups
    Jablonski, Michael
    GEOMETRY & TOPOLOGY, 2011, 15 (02) : 735 - 764
  • [50] Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
    Arvanitoyeorgos, Andreas
    Dzhepko, V. V.
    Nikonorov, Yu. G.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06): : 1201 - 1213