Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups

被引:22
|
作者
Arvanitoyeorgos, Andreas [1 ]
Dzhepko, V. V. [2 ]
Nikonorov, Yu. G. [2 ]
机构
[1] Univ Patras, Dept Math, GR-26500 Patras, Greece
[2] Rubtsovsk Ind Inst, Rubtsovsk 658207, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemannian manifolds; homogeneous spaces; Einstein metrics; Stiefel manifolds; SCALAR CURVATURE; MANIFOLDS;
D O I
10.4153/CJM-2009-056-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian manifold (M, rho) is called Einstein if the metric rho satisfies the condition Ric(rho) = c . rho for some constant c. This paper is devoted to the investigation of G-invariant Einstein metrics, with additional symmetries, on some homogeneous spaces G/H of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l). Furthermore, we show that for any positive integer p there exists a Stiefel manifold SO(n)/SO(l) that admits at least p SO(n)-invariant Einstein metrics.
引用
收藏
页码:1201 / 1213
页数:13
相关论文
共 50 条
  • [1] INVARIANT EINSTEIN KROPINA METRICS ON LIE GROUPS AND HOMOGENEOUS SPACES
    Hosseini, Masoumeh
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (02): : 295 - 304
  • [2] CURVATURE OF INVARIANT RIEMANNIAN METRICS OF LIE GROUPS AND HOMOGENEOUS SPACES
    BERARDBERGERY, L
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1978, 11 (04): : 543 - 576
  • [3] Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces
    Sun, Yukai
    Dai, Xianzhe
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [4] Stability of standard Einstein metrics on homogeneous spaces of non-simple Lie groups
    Gutierrez, Valeria
    Lauret, Jorge
    COLLECTANEA MATHEMATICA, 2023,
  • [5] ON LEFT INVARIANT (α, β)-METRICS ON SOME LIE GROUPS
    Deng, Shaoqiang
    Hosseini, Masoumeh
    Liu, Huaifu
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1071 - 1088
  • [6] Invariant Einstein metrics on certain compact semisimple Lie groups
    Yan, Zaili
    Deng, Shaoqiang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 59 : 138 - 153
  • [7] Homogeneous Einstein (α, β)-metrics on compact simple Lie groups and spheres
    Yan, Zaili
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 147 - 160
  • [8] Classification of invariant Einstein metrics on certain compact homogeneous spaces
    Yan, Zaili
    Chen, Huibin
    Deng, Shaoqiang
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (04) : 755 - 776
  • [9] Classification of invariant Einstein metrics on certain compact homogeneous spaces
    Zaili Yan
    Huibin Chen
    Shaoqiang Deng
    Science China(Mathematics), 2020, 63 (04) : 755 - 776
  • [10] INVARIANT KAHLER-EINSTEIN METRICS ON COMPACT HOMOGENEOUS SPACES
    ALEKSEEVSKII, DV
    PERELOMOV, AM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (03) : 171 - 182