Einstein metrics on compact Lie groups which are not naturally reductive

被引:0
|
作者
Andreas Arvanitoyeorgos
Kunihiko Mori
Yusuke Sakane
机构
[1] University of Patras,Department of Mathematics
[2] Saibi-Heisei Junior & Senior High School,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[3] Osaka University,undefined
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Einstein metrics; Homogeneous spaces; Naturally reductive metrics; Kähler C-spaces; 53C25; 53C30; 17B20;
D O I
暂无
中图分类号
学科分类号
摘要
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by D’Atri and Ziller (Mem Am Math Soc 18, (215) 1979). In 1996 the second author obtained non-naturally reductive Einstein metrics on the Lie group SU(n) for n ≥  6, by using a method of Riemannian submersions. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥  11), Sp(n) (n ≥  3), E6, E7, and E8.
引用
收藏
页码:261 / 285
页数:24
相关论文
共 50 条
  • [31] Examples of naturally reductive pseudo Riemannian Lie groups
    Ovando, Gabriela P.
    XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2011, 1360 : 157 - 163
  • [32] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Agricola, Ilka
    Ferreira, Ana Cristina
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 895 - 911
  • [33] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Ilka Agricola
    Ana Cristina Ferreira
    Advances in Applied Clifford Algebras, 2017, 27 : 895 - 911
  • [34] Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit
    Chen, Huibin
    Chen, Zhiqi
    Deng, Shaoqiang
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 81 - 84
  • [35] Hyperkahler metrics associated to compact Lie groups
    Dancer, A
    Swann, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 61 - 69
  • [36] New Non-Naturally Reductive Einstein Metrics on Sp(n)
    Shaoxiang Zhang
    Huibin Chen
    Shaoqiang Deng
    Acta Mathematica Scientia, 2021, 41 : 887 - 898
  • [37] New Non-Naturally Reductive Einstein Metrics on Sp(n)
    Zhang, Shaoxiang
    Chen, Huibin
    Deng, Shaoqiang
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 887 - 898
  • [38] NEW NON-NATURALLY REDUCTIVE EINSTEIN METRICS ON Sp(n)
    张绍祥
    陈慧斌
    邓少强
    Acta Mathematica Scientia, 2021, 41 (03) : 887 - 898
  • [39] New non-naturally reductive Einstein metrics on SO(n)
    Zhang, Ho
    Chen, Huibin
    Tan, Ju
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (11)
  • [40] A remark on left invariant metrics on compact Lie groups
    Schwachhoefer, Lorenz J.
    ARCHIV DER MATHEMATIK, 2008, 90 (02) : 158 - 162