Einstein metrics on compact Lie groups which are not naturally reductive

被引:0
|
作者
Andreas Arvanitoyeorgos
Kunihiko Mori
Yusuke Sakane
机构
[1] University of Patras,Department of Mathematics
[2] Saibi-Heisei Junior & Senior High School,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[3] Osaka University,undefined
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Einstein metrics; Homogeneous spaces; Naturally reductive metrics; Kähler C-spaces; 53C25; 53C30; 17B20;
D O I
暂无
中图分类号
学科分类号
摘要
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by D’Atri and Ziller (Mem Am Math Soc 18, (215) 1979). In 1996 the second author obtained non-naturally reductive Einstein metrics on the Lie group SU(n) for n ≥  6, by using a method of Riemannian submersions. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥  11), Sp(n) (n ≥  3), E6, E7, and E8.
引用
收藏
页码:261 / 285
页数:24
相关论文
共 50 条
  • [21] COMPACT LIE GROUPS AND COMPLEX REDUCTIVE GROUPS
    Jones, John
    Rumynin, Dmitriy
    Thomas, Adam
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2024, 26 (01) : 177 - 188
  • [22] Which real Lie groups are reductive?
    Magyar, Z
    ACTA MATHEMATICA HUNGARICA, 1999, 82 (03) : 187 - 192
  • [23] Which Real Lie Groups are Reductive?
    Z. Magyar
    Acta Mathematica Hungarica, 1999, 82 : 187 - 192
  • [24] Odd generalized Einstein metrics on Lie groups
    Cortes, Vicente
    David, Liana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [25] Indefinite Einstein metrics on nice Lie groups
    Conti, Diego
    Rossi, Federico A.
    FORUM MATHEMATICUM, 2020, 32 (06) : 1599 - 1619
  • [26] Indefinite Einstein Metrics on Simple Lie Groups
    Derdzinski, Andrzej
    Gal, Swiatoslaw R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (01) : 165 - 212
  • [27] Non-naturally reductive Einstein metrics on normal homogeneous Einstein manifolds
    Yan, Zaili
    Deng, Shaoqiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
  • [28] Non-naturally reductive Einstein metrics on SO(n)
    Chen, Huibin
    Chen, Zhiqi
    Deng, Shaoqiang
    MANUSCRIPTA MATHEMATICA, 2018, 156 (1-2) : 127 - 136
  • [29] Non-naturally reductive Einstein metrics on Sp(n)
    Chen, Zhiqi
    Chen, Huibin
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 47 - 55
  • [30] Non-naturally reductive Einstein metrics on Sp(n)
    Zhiqi Chen
    Huibin Chen
    Frontiers of Mathematics in China, 2020, 15 : 47 - 55