The Existence of Ground State Solutions for a Schrodinger-Bopp-Podolsky System with Convolution Nonlinearity

被引:2
|
作者
Xiao, Yao [1 ]
Chen, Sitong [1 ]
Shu, Muhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Bopp-Podolsky system; Ground state solution; Nehari-Pohozaev manifold; Concentration-compactness; KLEIN-GORDON-MAXWELL; EQUATION;
D O I
10.1007/s12220-023-01437-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Schr & ouml;dinger-Bopp-Podolsky system with convolution nonlinearity:{-Delta u + V(x)u + phi u = (I-alpha * F(u)) f(u), in R-3,-Delta phi+a(2)Delta(2)phi=4 pi u(2), in R-3,where alpha is an element of(0,2), I-alpha:R-3 -> R is the Riesz potential, V is an element of C (R-3, [0,infinity)), V-infinity = infinity, where sigma = alpha + 6/4. Through careful analysis of the nonlinear terms, we prove that the existence of ground state solutions and positive minimal energy solutions for the above system.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Critical Schrodinger-Bopp-Podolsky System with Prescribed Mass
    Li, Yiqing
    Zhang, Binlin
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [22] Schrodinger-Bopp-Podolsky System with Steep Potential Well
    Zhu, Qiutong
    Chen, Chunfang
    Yuan, Chenggui
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [23] Critical Schrodinger-Bopp-Podolsky systems: solutions in the semiclassical limit
    Damian, Heydy M. Santos
    Siciliano, Gaetano
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [24] NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS
    Li, Yuxin
    Chang, Xiaojun
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (56) : 1 - 19
  • [25] Existence of Least-Energy Sign-Changing Solutions for the Schrodinger-Bopp-Podolsky System with Critical Growth
    Hu, Yi-Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [26] On Nonlinear Schrodinger-Bopp-Podolsky System with Asymptotically Periodic Potentials
    Yang, Heng
    Yuan, Yanxiang
    Liu, Jiu
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [27] Multi-bump solutions of a Schrodinger-Bopp-Podolsky system with steep potential well
    Wang, Li
    Wang, Jun
    Wang, Jixiu
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (10) : 1 - 22
  • [28] The Schrodinger-Bopp-Podolsky Equation Under the Effect of Nonlinearities
    Zhu, Yuting
    Chen, Chunfang
    Chen, Jianhua
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 953 - 980
  • [29] Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3
    Ramos, Gustavo de Paula
    Siciliano, Gaetano
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [30] Sign-changing solutions for a class of Schrodinger-Bopp-Podolsky system with concave-convex nonlinearities
    Zhang, Ziheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)