Critical Schrodinger-Bopp-Podolsky systems: solutions in the semiclassical limit

被引:1
|
作者
Damian, Heydy M. Santos [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Do Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Bari Aldo Moro, Dept Matemat, Via E Orabona 4, I-70125 Bari, Italy
基金
巴西圣保罗研究基金会;
关键词
35J10; 35J50; 35Q60; EXISTENCE; EQUATIONS; STATES;
D O I
10.1007/s00526-024-02775-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following critical Schrodinger-Bopp-Podolsky system {-& varepsilon;(2)Delta u+V(x)u+Q(x)phi u=h(x,u)+K(x)|u|(4)u in R-3 (-)Delta phi+a(2)Delta(2)phi=4 pi Q(x)u(2 )in R-3 in the unknowns u,phi:R-3 -> R and where epsilon,a>0 are parameters. The functions V, K, Q satisfy suitable assumptions as well as the nonlinearity h which is subcritical. For any fixed a>0, we show existence of "small" solutions in the semiclassical limit, namely whenever epsilon -> 0. We give also estimates of the norm of this solutions in terms of epsilon. Moreover, we show also that fixed epsilon suitably small, when a -> 0 the solutions found strongly converge to solutions of the Schr & ouml;dinger-Poisson system.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS
    Li, Yuxin
    Chang, Xiaojun
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (56) : 1 - 19
  • [2] Multiplicity of solutions for Schrodinger-Bopp-Podolsky systems
    Jia, Chun-Rong
    Li, Lin
    Chen, Shang-Jie
    O'Regan, Donal
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 47 - 58
  • [3] GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER-BOPP-PODOLSKY BOPP-PODOLSKY SYSTEMS WITH NONPERIODIC POTENTIALS
    Jiang, Qiaoyun
    Li, Lin
    Chen, Shangjie
    Siciliano, Gaetano
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (43) : 1 - 25
  • [4] On the critical Schrodinger-Bopp-Podolsky system with general nonlinearities
    Chen, Sitong
    Tang, Xianhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [5] Critical Schrodinger-Bopp-Podolsky System with Prescribed Mass
    Li, Yiqing
    Zhang, Binlin
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [6] Existence and Multiplicity of Solutions for the Schrodinger-Bopp-Podolsky System
    Peng, Xueqin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3423 - 3468
  • [7] Multiple solutions for a Schrodinger-Bopp-Podolsky system with positive potentials
    Figueiredo, Giovany M.
    Siciliano, Gaetano
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2332 - 2351
  • [8] Ground State Solutions for the Nonlinear Schrodinger-Bopp-Podolsky System with Critical Sobolev Exponent
    Li, Lin
    Pucci, Patrizia
    Tang, Xianhua
    ADVANCED NONLINEAR STUDIES, 2020, 20 (03) : 511 - 538
  • [9] Normalized solutions for Schrodinger-Bopp-Podolsky system with a negative potential
    Zhang, Rong
    Yao, Shuai
    Sun, Juntao
    APPLIED MATHEMATICS LETTERS, 2025, 161
  • [10] Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3
    Ramos, Gustavo de Paula
    Siciliano, Gaetano
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):