NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS

被引:7
|
作者
Li, Yuxin [1 ]
Chang, Xiaojun [1 ,2 ]
Feng, Zhaosheng [3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词
Normalized solutions; Schrodinger-Bopp-Podolsky system; Lagrange multiplier; ground state; variational method; PRESCRIBED NORM; GROUND-STATES; EXISTENCE; EQUATIONS; WAVES;
D O I
10.58997/ejde.2023.56
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Sobolev critical Schrodinger-Bopp-Podolsky system -Delta u + phi u = lambda u + mu|u| (p-2)u + |u|(4)u in R-3, -Delta phi + Delta(2)phi = 4 pi u(2) in R-3, under the mass constraint integral(R3) u(2) dx = c for some prescribed c > 0, where 2 < p < 8/3, mu > 0 is a parameter, and lambda is an element of R is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Critical Schrodinger-Bopp-Podolsky systems: solutions in the semiclassical limit
    Damian, Heydy M. Santos
    Siciliano, Gaetano
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [2] Multiplicity of solutions for Schrodinger-Bopp-Podolsky systems
    Jia, Chun-Rong
    Li, Lin
    Chen, Shang-Jie
    O'Regan, Donal
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 47 - 58
  • [3] Normalized solutions for Schrodinger-Bopp-Podolsky system with a negative potential
    Zhang, Rong
    Yao, Shuai
    Sun, Juntao
    APPLIED MATHEMATICS LETTERS, 2025, 161
  • [4] Ground State Solutions for the Nonlinear Schrodinger-Bopp-Podolsky System with Critical Sobolev Exponent
    Li, Lin
    Pucci, Patrizia
    Tang, Xianhua
    ADVANCED NONLINEAR STUDIES, 2020, 20 (03) : 511 - 538
  • [5] Normalized solutions to a Schrodinger-Bopp-Podolsky system under Neumann boundary conditions
    Afonso, Danilo G. G.
    Siciliano, Gaetano
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (02)
  • [6] GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER-BOPP-PODOLSKY BOPP-PODOLSKY SYSTEMS WITH NONPERIODIC POTENTIALS
    Jiang, Qiaoyun
    Li, Lin
    Chen, Shangjie
    Siciliano, Gaetano
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (43) : 1 - 25
  • [7] On the critical Schrodinger-Bopp-Podolsky system with general nonlinearities
    Chen, Sitong
    Tang, Xianhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [8] Critical Schrodinger-Bopp-Podolsky System with Prescribed Mass
    Li, Yiqing
    Zhang, Binlin
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [9] Existence and Multiplicity of Solutions for the Schrodinger-Bopp-Podolsky System
    Peng, Xueqin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3423 - 3468
  • [10] Multiple solutions for a Schrodinger-Bopp-Podolsky system with positive potentials
    Figueiredo, Giovany M.
    Siciliano, Gaetano
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2332 - 2351