共 50 条
NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS
被引:7
|作者:
Li, Yuxin
[1
]
Chang, Xiaojun
[1
,2
]
Feng, Zhaosheng
[3
]
机构:
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词:
Normalized solutions;
Schrodinger-Bopp-Podolsky system;
Lagrange multiplier;
ground state;
variational method;
PRESCRIBED NORM;
GROUND-STATES;
EXISTENCE;
EQUATIONS;
WAVES;
D O I:
10.58997/ejde.2023.56
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the Sobolev critical Schrodinger-Bopp-Podolsky system -Delta u + phi u = lambda u + mu|u| (p-2)u + |u|(4)u in R-3, -Delta phi + Delta(2)phi = 4 pi u(2) in R-3, under the mass constraint integral(R3) u(2) dx = c for some prescribed c > 0, where 2 < p < 8/3, mu > 0 is a parameter, and lambda is an element of R is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.
引用
收藏
页码:1 / 19
页数:19
相关论文