NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS

被引:7
|
作者
Li, Yuxin [1 ]
Chang, Xiaojun [1 ,2 ]
Feng, Zhaosheng [3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词
Normalized solutions; Schrodinger-Bopp-Podolsky system; Lagrange multiplier; ground state; variational method; PRESCRIBED NORM; GROUND-STATES; EXISTENCE; EQUATIONS; WAVES;
D O I
10.58997/ejde.2023.56
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Sobolev critical Schrodinger-Bopp-Podolsky system -Delta u + phi u = lambda u + mu|u| (p-2)u + |u|(4)u in R-3, -Delta phi + Delta(2)phi = 4 pi u(2) in R-3, under the mass constraint integral(R3) u(2) dx = c for some prescribed c > 0, where 2 < p < 8/3, mu > 0 is a parameter, and lambda is an element of R is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] Ground states solutions for some non-autonomous Schrodinger-Bopp-Podolsky system
    Jia, Chunrong
    Li, Lin
    Chen, Shangjie
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (51) : 1 - 29
  • [22] Existence of Least-Energy Sign-Changing Solutions for the Schrodinger-Bopp-Podolsky System with Critical Growth
    Hu, Yi-Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [23] Multi-bump solutions of a Schrodinger-Bopp-Podolsky system with steep potential well
    Wang, Li
    Wang, Jun
    Wang, Jixiu
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (10) : 1 - 22
  • [24] On Nonlinear Schrodinger-Bopp-Podolsky System with Asymptotically Periodic Potentials
    Yang, Heng
    Yuan, Yanxiang
    Liu, Jiu
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [25] Normalized Solutions for the Critical Schrödinger–Bopp–Podolsky System
    Xueqin Peng
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [26] Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3
    Ramos, Gustavo de Paula
    Siciliano, Gaetano
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [27] NEHARI TYPE GROUND STATE SOLUTION FOR SCHRODINGER-BOPP-PODOLSKY SYSTEM
    Li, Lin
    Tang, Xianhua
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 139 - 152
  • [28] Existence and asymptotic behaviour of positive ground state solution for critical Schrodinger-Bopp-Podolsky system
    Liu, Senli
    Chen, Haibo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (06): : 2138 - 2164
  • [29] Normalized Solutions for the Critical Schrödinger-Bopp-Podolsky System
    Peng, Xueqin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [30] Sign-changing solutions for a class of Schrodinger-Bopp-Podolsky system with concave-convex nonlinearities
    Zhang, Ziheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)