Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3

被引:0
|
作者
Ramos, Gustavo de Paula [1 ]
Siciliano, Gaetano [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Elliptic systems; Schrodinger-Bopp-Podolsky equations; Constrained minimization; Critical point theory;
D O I
10.1007/s00033-023-01950-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the following Schrodinger-Bopp-Podolsky system in R-3 under an L-2-norm constraint,{- delta u + omega u + phi u = u|u|(P-2),- delta phi + a(2)delta(2)phi = 4 pi u(2),(sic)u(sic)(L)(2) = rho,where a, rho > 0 are fixed, with our unknowns being u, phi: R-3 -> R and omega is an element of R. We prove that if 2 < p < 3 (resp., 3 < p < 10/3) and rho > 0 is sufficiently small (resp., sufficiently large), then this system admits a least energy solution. Moreover, we prove that if 2 < p < 14/5 and rho > 0 is sufficiently small, then least energy solutions are radially symmetric up to translation, and as a -> 0, they converge to a least energy solution of the Schrodinger-Poisson-Slater system under the same L-2-norm constraint.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Critical Schrodinger-Bopp-Podolsky systems: solutions in the semiclassical limit
    Damian, Heydy M. Santos
    Siciliano, Gaetano
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [2] Existence and concentration behavior of solutions for the logarithmic Schrodinger-Bopp-Podolsky system
    Peng, Xueqin
    Jia, Gao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [3] Multiplicity of solutions for Schrodinger-Bopp-Podolsky systems
    Jia, Chun-Rong
    Li, Lin
    Chen, Shang-Jie
    O'Regan, Donal
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 47 - 58
  • [4] Existence and Multiplicity of Solutions for the Schrodinger-Bopp-Podolsky System
    Peng, Xueqin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3423 - 3468
  • [5] ASYMPTOTIC PROFILE OF LEAST ENERGY SOLUTIONS TO THE NONLINEAR SCHRODINGER-BOPP-PODOLSKY SYSTEM
    Ramos, Gustavo de paula
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (29) : 1 - 10
  • [6] Existence of Least-Energy Sign-Changing Solutions for the Schrodinger-Bopp-Podolsky System with Critical Growth
    Hu, Yi-Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [7] NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS
    Li, Yuxin
    Chang, Xiaojun
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (56) : 1 - 19
  • [8] GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER-BOPP-PODOLSKY BOPP-PODOLSKY SYSTEMS WITH NONPERIODIC POTENTIALS
    Jiang, Qiaoyun
    Li, Lin
    Chen, Shangjie
    Siciliano, Gaetano
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (43) : 1 - 25
  • [9] The Existence of Ground State Solutions for a Schrodinger-Bopp-Podolsky System with Convolution Nonlinearity
    Xiao, Yao
    Chen, Sitong
    Shu, Muhua
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (12)
  • [10] EXISTENCE AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR A SCHRODINGER-BOPP-PODOLSKY SYSTEM
    Wang, Lixiong
    Chen, Haibo
    Liu, Senli
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 59 (2B) : 913 - 940