Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3

被引:0
|
作者
Ramos, Gustavo de Paula [1 ]
Siciliano, Gaetano [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Elliptic systems; Schrodinger-Bopp-Podolsky equations; Constrained minimization; Critical point theory;
D O I
10.1007/s00033-023-01950-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the following Schrodinger-Bopp-Podolsky system in R-3 under an L-2-norm constraint,{- delta u + omega u + phi u = u|u|(P-2),- delta phi + a(2)delta(2)phi = 4 pi u(2),(sic)u(sic)(L)(2) = rho,where a, rho > 0 are fixed, with our unknowns being u, phi: R-3 -> R and omega is an element of R. We prove that if 2 < p < 3 (resp., 3 < p < 10/3) and rho > 0 is sufficiently small (resp., sufficiently large), then this system admits a least energy solution. Moreover, we prove that if 2 < p < 14/5 and rho > 0 is sufficiently small, then least energy solutions are radially symmetric up to translation, and as a -> 0, they converge to a least energy solution of the Schrodinger-Poisson-Slater system under the same L-2-norm constraint.
引用
收藏
页数:17
相关论文
共 50 条